研究报告

长双歧杆菌的最适底物解析和高密度发酵工艺优化

  • 高欣伟 ,
  • 崔树茂 ,
  • 唐鑫 ,
  • 毛丙永 ,
  • 赵建新 ,
  • 陈卫
展开
  • (江南大学 食品学院,江苏 无锡,214122)
硕士研究生(崔树茂副研究员为通讯作者,E-mail:cuishumao@jiangnan.edu.cn)

收稿日期: 2020-09-16

  修回日期: 2020-11-02

  网络出版日期: 2021-11-04

基金资助

国家青年科学基金项目(31801530);国家食品科学与工程一流学科建设项目(JUFSTR20180102)

Optimization of substrate in high-density fermentation of Bifidobacterium longum

  • GAO Xinwei ,
  • CUI Shumao ,
  • TANG Xin ,
  • MAO Bingyong ,
  • ZHAO Jianxin ,
  • CHEN Wei
Expand
  • (School of Food Science and Technology,Jiangnan University,Wuxi 214122,China)

Received date: 2020-09-16

  Revised date: 2020-11-02

  Online published: 2021-11-04

摘要

为提高长双歧杆菌的培养密度,分别测定了3株菌株在添加不同氮源与微量元素时的生长浓度,确定最适底物,并进一步测定各菌株生长速率被抑制渗透压和生长完全抑制渗透压,通过分析菌株在不同碳氮比、不同浓度微量元素与不同初始渗透压(底物浓度)条件下的最大生物量,确定最优培养工艺。结果表明,长双歧杆菌对酵母类氮源利用率最高,其限制性微量元素是Mg2+;底物碳氮比基于菌株生长速率被抑制时碳氮消耗比、底物浓度,基于完全抑制渗透压计算出的理论碳氮消耗量配制培养基时最利于菌体增殖。另外最高生物量与Mg2+浓度在一定范围内呈正相关。以酵母浸粉FM803作为氮源、葡萄糖作为碳源(碳氮质量比为2.5∶1),在最适培养pH(5.00)下分批培养,长双歧杆菌CCFM 687、CCFM 1029和FGSZY 17L7最高活菌数分别达到(7.9±1.1)×109、(9.3±0.5)×109和(1.1±0.1)×1010CFU/mL,是MRS培养的50~70倍。该研究结果的应用将显著提高长双歧杆菌的工业化生产效率。

本文引用格式

高欣伟 , 崔树茂 , 唐鑫 , 毛丙永 , 赵建新 , 陈卫 . 长双歧杆菌的最适底物解析和高密度发酵工艺优化[J]. 食品与发酵工业, 2021 , 47(19) : 12 -20 . DOI: 10.13995/j.cnki.11-1802/ts.025681

Abstract

In order to improve biomass yield of Bifidobacterium longum, three strains were determined when different nitrogen sources and trace elements were added to screening the optimum substrate. Furthermore, the osmotic pressure was measured when the growth rate of each strain was inhibited and growth completely inhibited. The results showed that B. longum had the highest utilization rate with yeast nitrogen. The limiting trace element was Mg2+. The substrate C/N ratio was based on the C/N consumption ratio when the strain growth rate was inhibited. The substrate concentration was based on the carbon and nitrogen consumption calculated by the theory of complete inhibition of osmotic pressure. In addition, the maximum biomass was positively correlated with Mg2+ in a certain range. When yeast extract FM803 was used as nitrogen source and glucose as carbon source (C/N mass ratio 2.5), the viable bacteria numbers of B. longum CCFM 687, CCFM 1029 and FGSZY 17L7 could reach to (7.9±1.1)×109, (9.3 ±0.5)×109, and (1.1 ±0.1)×1010 CFU/mL, 50-70 times higher than that of in MRS. The results will significantly improve the industrial production efficiency of B. longum.

参考文献

[1] MENG D,SOMMELLA E,SALVIATI E,et al.Indole-3-lactic acid,a metabolite of tryptophan,secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine[J].Pediatric Research,2020,88(2):209-217.
[2] FINAMORE A,ROSELLI M,DONINI L,et al.Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice[J].Nutrition,2019,63-64:184-192.
[3] FANG Z F,LI L Z,LIU X Y,et al.Strain-specific ameliorating effect of Bifidobacterium longum on atopic dermatitis in mice[J].Journal of Functional Foods,2019,60:103 426.
[4] BONFRATE L,DI PALO D M,CELANO G,et al.Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients[J].European Journal of Clinical Investigation,2020,50(3):e13201.
[5] CHEN H,TIAN M Q,CHEN L,et al.Optimization of composite cryoprotectant for freeze-drying Bifidobacterium bifidum BB01 by response surface methodology[J].Artificial Cells,Nanomedicine,and Biotechnology,2019,47(1):1 559-1 569.
[6] SCHELL M A,KARMIRANTZOU M,SNEL B,et al.The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract[J].Proceedings of the National Academy of Sciences,2002,99(22):14 422-14 427.
[7] 王玉林, 黄洁,崔树茂,等.植物乳杆菌最适生长底物解析及高密度培养工艺[J].食品与发酵工业,2020,46(4):19-27.
WANG Y L,HUANG J,CUI S M,et al.Analysis of optimal growth substrate and high-density culture process of Lactobacillus plantarum[J].Food and Fermentation Industries,2020,46(4):19-27.
[8] CUI S M,ZHAO J X,LIU X M,et al.Maximum-biomass prediction of homofermentative Lactobacillus[J].Journal of Bioscience and Bioengineering,2016,122(1):52-57.
[9] CUI S M,ZHAO J X,LIU X M,et al.Maximum-biomass concentration prediction for Bifidobacteria in the pH-controlled fed-batch culture[J].Letters in Applied Microbiology,2016,62(3):256-263.
[10] LIU B B,YANG M H,QI B K,et al.Optimizing l-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method[J].Biochemical Engineering Journal,2010,52(2-3):212-219.
[11] YOO I-K,CHANG H N,LEE E G,et al.Effect of B vitamin supplementation on lactic acid production by Lactobacillus casei[J].Journal of Fermentation and Bioengineering,1997,84(2):172-175.
[12] 朱丹凤, 王园园,崔树茂,等.罗伊氏乳杆菌氮源利用的选择性与特征分析[J].食品与发酵工业,2018,44(11):35-41.
ZHU D F,WANG Y Y,CUI S M,et al.Selectivity and characteristic analysis of nitrogen source utilized by Lactobacillus reuteri[J].Food and Fermentation Industries,2018,44(11):35-41.
[13] FITZPATRICK J J,AHRENS M,SMITH S.Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate[J].Process Biochemistry,2001,36(7):671-675.
[14] GROOT M N N,KLAASSENS E,DE VOS W M,et al.Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis[J].Microbiology (Reading,England),2005,151(Pt 4):1 229-1 238.
[15] WEGKAMP A,DE VOS W M,SMID E J.Folate overproduction in Lactobacillus plantarum WCFS1 causes methotrexate resistance[J].FEMS Microbiology Letters,2009,297(2):261-265.
[16] 崔树茂. 乳酸菌的生长抑制和冻干存活的影响因素及规律[D].无锡:江南大学,2017.
CUI S M.The impact factors and rules of growth inhibition and freeze-drying survival for Lactic acid bacteria[D].Wuxi:Jiangnan University,2017.
[17] DE VRIES W,STOUTHAMER A H.Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria[J].Journal of Bacteriology,1967,93(2):574-576.
[18] POKUSAEVA K,FITZGERALD G F,VAN SINDEREN D.Carbohydrate metabolism in Bifidobacteria[J].Genes & Nutrition,2011,6(3):285-306.
[19] GULBINSKY J S,CLELAND W W.Kinetic studies of Escherichia coli galactokinase[J].Biochemistry,1968,7(2):566-575.
[20] MATSCHINSKY F M,MAGNUSON M A.Glucokinase and Glycemic Diseases:From Basics to Novel Therapeutics[M].Basel:Karger Medical and Scientific Publishers,2004.
[21] LEE L V,POYNER R R,VU M V,et al.Role of metal ions in the reaction catalyzed by l-ribulose-5-phosphate 4-epimerase[J].Biochemistry,2000,39(16):4 821-4 830.
[22] VENKATESHWAR M,CHAITANYA K,ALTAF M,et al.Influence of micronutrients on yeast growth and β-d-fructofuranosidase production[J].Indian Journal of Microbiology,2010,50(3):325-331.
文章导航

/