研究报告

嗜黏蛋白阿克曼氏菌ATCC BAA-835肠道益生作用的体外评价

  • 吴艳丽 ,
  • 刘朋 ,
  • 苏咏欣 ,
  • 李恒 ,
  • 耿燕 ,
  • 任怡琳 ,
  • 许泓瑜 ,
  • 许正宏 ,
  • 史劲松
展开
  • 1(江南大学 生命科学与健康工程学院,江苏 无锡,214122)
    2(糖化学与生物技术教育部重点实验室,江苏 无锡,214122)
    3(粮食发酵与食品生物制造国家工程研究中心,江苏 无锡,214122)
    4(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(李恒副教授和史劲松教授为共同通信作者,E-mail:liheng@jiangnan.edu.cn;shijs@163.com)

收稿日期: 2021-03-24

  修回日期: 2021-04-16

  网络出版日期: 2022-02-28

基金资助

江苏省重点研发项目(BE2018622);宁夏回族自治区重点研发项目(2020BFH02011);宁夏回族自治区特色农产品生物加工创新团队项目(kjt201701);江苏高校境外研究计划

Intestinal probiotic effect of Akkermansia muciniphila ATCC BAA-835 in vitro

  • WU Yanli ,
  • LIU Peng ,
  • SU Yongxin ,
  • LI Heng ,
  • GENG Yan ,
  • REN Yilin ,
  • XU Hongyu ,
  • XU Zhenghong ,
  • SHI Jinsong
Expand
  • 1(School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Wuxi 214122, China)
    3(National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Wuxi 214122, China)
    4(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2021-03-24

  Revised date: 2021-04-16

  Online published: 2022-02-28

摘要

嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila,Akk)具有良好的肠道益生作用,与宿主肠道健康、代谢、神经等生理状态密切相关。研究采用体外厌氧培养的方法评价1株Akk模式菌株(ATCC BAA-835)的肠道益生作用,从菌株水平考查菌株对模拟胃肠环境的耐受性、对Caco-2细胞的黏附性,以及利用低聚糖产短链脂肪酸和形成生物膜的能力。结果表明,Akk对人工胃肠液和胆盐的耐受性良好,能够黏附在分化的Caco-2细胞微绒毛尖端上。Akk在低聚糖培养基中生长良好,培养12 h内快速消耗还原糖并产生短链脂肪酸,乙酸产量最高,其次是丁酸。Akk自身具有弱生物膜形成能力,低聚糖可显著提高其成膜能力,在壳寡糖质量浓度为250 μg/mL时,Akk具有中等生物膜形成能力。该研究借助微生物纯培养与细胞模型等体外研究方法,进一步了解了Akk发挥肠道益生作用的微生物学基础。

本文引用格式

吴艳丽 , 刘朋 , 苏咏欣 , 李恒 , 耿燕 , 任怡琳 , 许泓瑜 , 许正宏 , 史劲松 . 嗜黏蛋白阿克曼氏菌ATCC BAA-835肠道益生作用的体外评价[J]. 食品与发酵工业, 2022 , 48(2) : 156 -162 . DOI: 10.13995/j.cnki.11-1802/ts.027445

Abstract

Akkermansia muciniphila (Akk) possesses superior intestinal probiotic effect which is closely related to the host's physiological conditions, including intestinal, metabolic and neurological health. In this study, the intestinal probiotic effect of an Akk model strain (ATCC BAA-835) was evaluated using anaerobic cultivation method in vitro. The probiotic abilities of Akk were investigated, including the tolerance to simulated gastrointestinal environment, adhesion to Caco-2 cells, production of short-chain fatty acids and formation of biofilms utilizing oligosaccharides. The results showed that this Akk stain performed good tolerance to artificial gastrointestinal fluids and bile salts. It could adhere to the microvilli tip of differentiated Caco-2 cells. This Akk strain grew well in the medium with various oligosaccharides. It could quickly consume reducing sugars within 12 h and produce short-chain fatty acids, of which the output of acetic acid was the highest, followed by butyric acid. Akk possessed weak biofilm-forming ability, which could be improved significantly with the addition of oligosaccharides. And Akk could form biofilms at a medium level when the concentration of chito-oligosaccharides was 250 μg/mL. This study could provide further understanding for the microbiological basis of Akk's intestinal probiotic effect with assessments in vitro including pure microbial culture and cell models.

参考文献

[1] ROPOT A V, KARAMZIN A M, SERGEYEV O V.Cultivation of the next-generation probiotic Akkermansia muciniphila, methods of its safe delivery to the intestine, and factors contributing to its growth in vivo[J].Current Microbiology, 2020, 77(8):1 363-1 372.
[2] DAO M C, EVERARD A, ARON-WISNEWSKY J, et al.Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity:Relationship with gut microbiome richness and ecology[J].Gut, 2016.65(3):426-436.
[3] DEPOMMIER C, EVERARD A, DRUART C, et al.Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:A proof-of-concept exploratory study[J].Nature Medicine.2019, 25(7):1 096-1 103.
[4] ZHAI R, XUE X H, ZHANG L Y, et al.Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice[J].Frontiers in Cellular and Infection Microbiology, 2019, 9:239.
[5] ANHÊ F F, NACHBAR R T, VARIN T V, et al.A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss[J].Molecular Metabolism, 2017, 6(12):1 563-1 573.
[6] ZOU R, XU F F, WANG Y Z, et al.Changes in the gut microbiota of children with autism spectrum disorder[J].Autism Research, 2020, 13(9):1 614-1 625.
[7] OLSON C A, VUONG H E, YANO J M, et al.The gut microbiota mediates the anti-seizure effects of the ketogenic diet[J].Cell, 2019, 173(7):1 728-1 741.
[8] LI J, ZHAO F Q, WANG Y D, et al.Gut microbiota dysbiosis contributes to the development of hypertension[J].Microbiome, 2017, 5(1):1-19.
[9] ZHOU K Q.Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies[J].Journal of Functional Foods, 2017, 33:194-201.
[10] COZZOLINO A, VERGALITO F, TRREMONTE P, et al.Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG[J].Microorganisms, 2020, 8(2):189-202.
[11] 张小贝, 朱国鹏, 祝志欣, 等.利用3,5-二硝基水杨酸法测定菜用甘薯叶中的多糖含量[J].热带生物学报, 2017, 8(3):359-363;377.
ZHANG X B, ZHU G P, ZHU Z Z, et al.Determination of the polysaccharide content of sweet potato leaves by using 3'5'-dinitrosalicylic acid(DNS)[J].Journal of Tropical Biology, 2017,8(3):359-363;377.
[12] 强华,刘光英,林任玺. 粪肠球菌ace阳性和阴性菌株体外生物被膜形成能力比较[J]. 中国人兽共患病学报, 2019, 35(7): 599-603.
QIANG H, LIU G Y, LIN R X. Biofilm formation ability of Enterococcus faecalis ace positive and negative strains in vitro[J]. Chinese Journal of Zoonoses, 2019, 35(7): 599-603.
[13] MARCIAL-COBA M S, CIEPLAK T, CAHU' T B,et al.Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage[J].Food Function, 2018, 9(11):5 868-5 879.
[14] REUNANEN J, KAINULAIINEN V, HUUSKONEN L, et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J].Applied and Environmental Microbiology, 2015, 81(11):3 655-3 662.
[15] COZZOLINO A, VERGALITO F, TREMONTE P, et al.Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG[J].Microorganisms, 2020, 8(2):189.
[16] SOPHATHA B, PIWAT S, TEANPAISAN R.Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains:Study in Caco-2 and H357 cells[J].Archives of Microbiology, 2020, 202(6):1 349-1 357.
[17] 张秋香, 应聪萍, 刘思思,等.乳酸菌利用低聚果糖和低聚木糖的特性研究[J].食品与生物技术学报, 2020, 39(4):18-23.
ZHANG Q X, YING C P, LIU S S, et al. Fructooligosaccharides and xylooligosaccharides utilization properties of lactic acid bacteria[J].Journal of Food Science and Biotechnology, 2020, 39(4):18-23.
[18] 陈韫慧, 方思璇, 陈佳琪, 等.不同益生元对植物乳杆菌生长的影响[J].食品与发酵工业, 2020, 46(21):28-33.
CHEN Y H, FANG S X, CHEN J Q, et a1.Effects of different prebiotics on the growth of Lactobacillus plantarum[J].Food and Fermentation Industries, 2020, 46(21):28-33.
[19] KOSTOPOULOS I, ELZINGA J, OTTMAN N, et al.Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro[J].Scientific Reports, 2020, 10(1):14 330-14 347.
[20] MILANI C, TURRONI F, DURANTI S, et al.Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment[J].Applied and Environmental Microbiology, 2016, 82(4):980-991.
[21] DURANTI S, TURRONI F, LUGLI G A, et al.Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L[J].Applied and Environmental Microbiology, 2014, 80(19):6 080-6 090.
[22] OVERBY H B, FERGUSON J F.Gut microbiota-derived short-chain fatty acids facilitate microbiota: Host cross talk and modulate obesity and hypertension[J].Current Hypertension Reports, 2021, 23(2): 1-10.
[23] SHIN C, LIM Y, LIM H, et al.Plasma short-chain fatty acids in patients with parkinson's disease[J].Movement Disorders, 2020, 35(6):1 021-1 027.
[24] VAN DER.HEE B, WELLS J M.Microbial regulation of host physiology by short-chain fatty acids[J].Trends in Microbiology, 2021,29(8):700-712.
[25] TANG R Q, LI L J.Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus[J].The Canadian Journal of Infectious Diseases & Medical Microbiology, 2021.DOI:10.1155/2021/9756586.
[26] VAN DER BEEK C,DEJONG C H C, TROOST F J, et al.Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing[J].Nutrition Reviews, 2017, 75(4):286-305.
[27] 杨开, 张雅杰, 张酥, 等.灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J].食品与发酵工业, 2020, 46(9):37-42.
YANG K, ZHANG Y J, ZHANG S, et al.Preparation of ganoderma lucidum spore oligosaccharide and its regulation on gut microbiota[J]. Food and Fermentation Industries, 2020, 46(9):37-42.
[28] LU X, ZHANG Y, WU X T,et al.Effect of specific structure of lotus seed oligosaccharides on the production of short-chain fatty acids by Bifidobacterium adolescentis[J].Chinese Journal of Structural Chemistry, 2015, 34(4):510-522.
[29] TURRONI F, MILANI C, DURANTI S, et al.Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach[J].The ISME Journal, 2016, 10(7):1 656-1 668.
文章导航

/