研究报告

鉴定红曲菌中萘醌响应基因提高红曲色素产率

  • 范菲 ,
  • 段雅丽 ,
  • 刘亚鹏 ,
  • 余沛霖 ,
  • 雷鸣 ,
  • 陈少云 ,
  • 李牧
展开
  • 1(华中农业大学 食品科技学院,湖北 武汉,430070)
    2(浙江中医药大学 生命科学学院,浙江 杭州,310000)
范菲本科生和段雅丽硕士研究生为共同第一作者(李牧副教授为通信作者,E-mail:limu@mail.hzau.edu.cn)

网络出版日期: 2022-04-06

基金资助

国家自然科学基金面上项目(31871780);湖北省大学生创新创业训练计划项目(S202010504206)

Identification of naphthoquinone-responsive gene in Monascus strain for improvement of Monascus pigments yield

  • FAN Fei ,
  • DUAN Yali ,
  • LIU Yapeng ,
  • YU Peilin ,
  • LEI Ming ,
  • CHEN Shaoyun ,
  • LI Mu
Expand
  • 1(College of Food Science and Technology,Huazhong Agricultural University,Wuhan 430070,China)
    2(School of Life Sciences,Zhejiang Chinese Medical University,Hangzhou 310000,China)

Online published: 2022-04-06

摘要

由红曲菌合成的一类具有鲜明颜色的次级代谢产物被称为红曲色素,是国内销量较高的天然食用色素品种之一。前期研究发现,外源的萘醌化合物能够促进红曲菌合成红曲色素,但具体哪些基因参与这一过程仍不清楚,给后续应用带来了困难。该研究首先验证了外源萘醌化合物能够提高红色红曲菌(Monascus ruber)M7的红曲色素产率;然后采用转录组学和人工智能模型联用的方法预测了2个最有可能的萘醌响应基因:laeA和mga2;通过萘醌添加培养实验证明mga2(G蛋白β亚基)是M.ruber M7中的萘醌响应基因;最后,利用萘醌化合物白花丹醌诱导mga2基因过表达菌株,使红曲色素产率较原始菌株提高74%。该研究不仅率先发现mga2基因是红曲菌中的萘醌响应基因,并应用于提高红曲色素产率,也为其他丝状真菌中类似诱导机制的研究提供了借鉴。

本文引用格式

范菲 , 段雅丽 , 刘亚鹏 , 余沛霖 , 雷鸣 , 陈少云 , 李牧 . 鉴定红曲菌中萘醌响应基因提高红曲色素产率[J]. 食品与发酵工业, 2022 , 48(5) : 35 -40;46 . DOI: 10.13995/j.cnki.11-1802/ts.028183

Abstract

Monascus pigments, which are produced by Monascus strains, exhibit bright colors. Monascus pigment is one of the natural food pigments with high sales in China. In our previous work, it was found that exogenous naphthoquinone improved the yield of Monascus pigments. However, the genes responsible for naphthoquinone response in Monascus strains are still unknow. Thus, it is hard to facilitate the practical application. In this study, it was verified that Monascus pigments yield of M. ruber M7 was promoted by the addition of exogenous naphthoquinone. Secondly, two naphthoquinone-responsive gene candidates, laeA and mga2, were revealed by a combination of transcriptomics and artificial intelligence analysis. Thirdly, mga2 gene (G protein β subunit) was identified as a naphthoquinone-responsive gene in M. ruber M7 by the direct feeding assay. Lastly, the strain M7:PtrpC-mga2 displayed an increased Monascus pigments yield, 74% higher than that of wild type strain under the plumbagin induction condition. For the first time, this study elucidated that mga2 gene is the naphthoquinone-responsive gene in Monascus spp. This discovery was successfully employed to improve Monascus pigments yield. Furthermore, our research could be used as reference for elucidating the similar induction mechanism in other filamentous fungi.

参考文献

[1] CHEN W P,CHEN R F,LIU Q P,et al.Orange,red,yellow:Biosynthesis of azaphilone pigments in Monascus fungi[J].Chemical Science,2017,8(7):4 917-4 925.
[2] CHEN W P,FENG Y L,MOLNR I,et al.Nature and nurture:Confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments[J].Natural Product Reports,2019,36(4):561-572.
[3] YANG Y,LIU B,DU X J,et al.Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain,Monascus purpureus YY-1[J].Scientific Reports,2015,5:8331.
[4] 李琦,高健信,陈福生,等.不产桔霉素高产红曲色素的基因工程红曲菌株构建[J].中国酿造,2018,37(6):30-35.
LI Q,GAO J X,CHEN F S,et al.Construction of genetically engineered Monascus strains with no citrinin yield but high yield Monascus pigments[J].China Brewing,2018,37(6):30-35.
[5] LIU Q P,CAI L,SHAO Y C,et al.Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism[J].Fungal Biology,2016,120(3):297-305.
[6] 林琳,王昌禄,李贞景,等.mok E基因过表达对红曲霉Monacolin K产量、菌丝及孢子形态的影响[J].食品科学,2018,39(8):45-49.
LIN L,WANG C L,LI Z J,et al.Effect of mok E overexpression on Monacolin K production and morphology of mycelia and spores in Monascus[J].Food Science,2018,39(8):45-49.
[7] LI M,KANG L J,DING X L,et al.Monasone naphthoquinone biosynthesis and resistance in Monascus fungi[J].mBio,2020.DOI:10.1128/mbio.02 676-19.
[8] 陈晓艳,董朝轶.动态贝叶斯网络结构搜索法辨识生物神经网络连接[J].生命科学研究,2017,21(6):527-533.
CHEN X Y,DONG C Y.Identification of biological neural network connections by dynamical Bayesian network structure searching[J].Life Science Research,2017,21(6):527-533.
[9] 谢媛媛,苏加坤,应旭辉,等.基于人工智能技术的烟气暴露大鼠代谢生物标志物筛选方法研究[J].分析测试学报,2017,36(6):705-710.
XIE Y Y,SU J K,YING X H,et al.Study on screening of cigarette smoke exposure biomarkers for rat’s metabolites on the basis of artificial intelligence technologies[J].Journal of Instrumental Analysis,2017,36(6):705-710.
[10] MORAVC K M,SCHMID M,BURCH N,et al.DeepStack:Expert-level artificial intelligence in heads-up no-limit poker[J].Science,2017,356(6 337):508-513.
[11] HUANG T,TAN H L,LU F J,et al.Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910[J].Microbial Cell Factory,2017,16(1):208.
[12] HOWARD N,CHOUIKHI N,ADEEL A,et al.BrainOS:A novel artificial brain-alike automatic machine learning framework[J].Frontiers in Computational Neuroscience,2020,14:16.
[13] 李苍柏,肖克炎,李楠,等.支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J].地球学报,2020,41(2):309-319.
LI C B,XIAO K Y,LI N,et al.A comparative study of support vector machine,random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction[J].Acta Geoscientica Sinica,2020,41(2):309-319.
[14] 刘开放,席志文,黄林娜,等.布拉酵母高密度发酵培养基及发酵工艺优化[J].食品科学,2019,40(8):56-62.
LIU K F,XI Z W,HUANG L N,et al.Optimization of high cell density fermentation of Saccharomyces boulardii for enhanced biomass production[J].Food Science,2019,40(8):56-62.
[15] HU Y,ZHOU Y X,MAO Z J,et al.NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin[J].AMB Express,2017,7(1):166.
[16] CHEN W P,HE Y,ZHOU Y X,et al.Edible filamentous fungi from the species Monascus:Early traditional fermentations,modern molecular biology,and future genomics[J].Comprehensive Reviews in Food Science and Food Safety,2015,14(5):555-567.
[17] LIU J,CHAI X Y,GUO T,et al.Disruption of the ergosterol biosynthetic pathway results in increased membrane permeability,causing overproduction and secretion of extracellular Monascus pigments in submerged fermentation[J].Journal of Agricultural and Food Chemistry,2019,67(49):13 673-13 683.
[18] BIJINU B,SUH J W,PARK S H,et al.Delineating Monascus azaphilone pigment biosynthesis:Oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis[J].RSC Advances,2014,4(103):59 405-59 408.
[19] 张奇,荣雯雯,刘艳.基因表达谱数据分类算法综述[J].实用预防医学,2018,25(8):1 018-1 021.
ZHANG Q,RONG W W,LIU Y.Review of classification algorithms for gene expression profile data[J].Practical Preventive Medicine,2018,25(8):1 018-1 021.
[20] 屈景怡,叶萌,渠星.基于区域残差和LSTM网络的机场延误预测模型[J].通信学报,2019,40(4):149-159.
QU J Y,YE M,QU X.Airport delay prediction model based on regional residual and LSTM network[J].Journal on Communications,2019,40(4):149-159.
[21] BOCK S,WEIS M.A proof of local convergence for the Adam optimizer[C].2019 International Joint Conference on Neural Networks(IJCNN).Budapest:Institute of Electrical and Electronic Engineers,2019.
[22] HAGIWARA D,MIURA D,SHIMIZU K,et al.A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions[J].PLoS Pathogens,2017,13(1):e1006096.
[23] JOHNSON E L,HEAVER S L,WATERS J L,et al.Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels[J].Nature Communications,2020,11(1):2 471.
[24] LEI M,LIU J,FANG Y,et al.Effects of different G-protein α-subunits on growth,development and secondary metabolism of Monascus ruber M7[J].Frontiers in Microbiology,2019,10:1555.
文章导航

/