该文探究了不同低聚糖对益生菌发酵乳活菌数、pH、酸度、总抗氧化能力及其黏附能力的影响,并分析其相关性。结果表明:3株益生菌对不同的低聚糖显示出不同的偏好性,均能够不同程度的利用菊粉、低聚果糖和低聚半乳糖,其中菊粉对鼠李糖乳杆菌Hsryfm 1301发酵乳活菌数的影响最大,由8.17×108 CFU/mL至1.24×109 CFU/mL,增殖幅度为1.52倍。3种低聚糖对3株益生菌发酵乳在总抗氧化能力上表现出广谱的增强。低聚果糖对发酵乳中3株益生菌黏附Caco-2能力均具有提升作用,发酵乳中鼠李糖乳杆菌LV108和发酵乳杆菌DALI 02黏附Caco-2能力在添加低聚半乳糖后差异不显著(P>0.05)。相关性分析结果显示,总抗氧化能力与活菌数呈正相关(P<0.05),与pH呈负相关(P<0.05)。黏附Caco-2细胞能力与活菌数呈负相关(P<0.01),与pH呈正相关(P<0.01),与酸度呈负相关(P<0.05)。益生元和益生菌的协同作用可以增强发酵乳的功能特性,该研究将对选用功能增效显著的低聚糖提供理论参考,并对功能型合生元发酵乳的制备具有指导意义。
This article explored the effects of different oligosaccharides on the viable count of fermented milk, pH, acidity, total antioxidant capacity and its adhesion ability, and analyzed their correlation. The results showed that the three probiotics showed different preferences for different oligosaccharides, and all of them could use inulin, fructooligosaccharides and galactooligosaccharides to varying degrees. Among them, inulin had the greatest impact on the number of viable bacteria in the fermented milk of Lactobacillus rhamnosus Hsryfm 1301, from 8.17×108 CFU/mL to 1.24×109 CFU/mL, and the proliferation range was 1.52 times. The three oligosaccharides showed a broad-spectrum enhancement in the total antioxidant capacity of the three strains of probiotic fermented milk. Fructooligosaccharides can improve the adhesion of the three probiotics in fermented milk to Caco-2. The adhesion of Lactobacillus rhamnosus LV108 and Lactobacillus fermentum DALI 02 in fermented milk to Caco-2 was not significantly different after the addition of galactooligosaccharide (P>0.05). The results of correlation analysis showed that the total antioxidant capacity was positively correlated with the number of viable bacteria(P<0.05), and negatively correlated with pH (P<0.05). The ability to adhere to Caco-2 cells was negatively correlated with the number of viable bacteria(P<0.01), positively correlated with pH(P<0.01), and negatively correlated with acidity (P<0.05). This study provides a theoretical reference for the selection of oligosaccharides with significant functional synergies, and will have important guiding significance for the preparation of functional synbiotic fermented milk.
[1] HOU Q C,LI C K,LIU Y H,et al.Koumiss consumption modulates gut microbiota,increases plasma high density cholesterol,decreases immunoglobulin G and albumin[J].Journal of Functional Foods,2019,52:469-478.
[2] KECHAGIA M,BASOULIS D,KONSTANTOPOULOU S,et al.Health benefits of probiotics:A review[J].ISRN Nutrition.2013:481651.
[3] LI C K,KWOK L Y,MI Z H,et al.Characterization of the angiotensin-converting enzyme inhibitory activity of fermented milks produced with Lactobacillus casei[J].Journal of Dairy Science,2017,100(12):9 495-9 507.
[4] FULLER,R.Probiotics in human medicine[J].Gut,1991,32(4):439-442.
[5] GHANY K A E,ELHAFEZ E A,HAMOUDA R A,et al.Evaluation of antioxidant and antitumor activities of Lactobacillus acidophilus bacteria isolated from Egyptian infants[J].International Journal of Pharmacology,2014,10(5):282-288.
[6] LI S Y,ZHAO Y J,ZHANG L,et al.Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods[J].Food Chemistry,2012,135(3):1 914-1 919.
[7] JI K,JANG N Y,KIM Y T.Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces[J].Journal of Microbiology and Biotechnology,2015,25(9):1 568-1 577.
[8] CHEN Q,KONG B H,SUN Q X,et al.Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage:In vitro and in a sausage model[J].Meat Science,2015,110:180-188.
[9] DE MORAIS E C.Prebiotic addition in dairy products[M]//Probiotics,Prebiotics,and Synbiotics.Amsterdam:Elsevier,2016:37-46.
[10] IBRAHIM O O.Functional oligosaccharide:Chemicals structure,manufacturing,health benefits,applications and regulations[J].Journal of Food Chemistry & Nanotechnology,2018,4(4):DOI:10.17756/jfcn.2018-060.
[11] CATENZA K F,DONKOR K K.Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry:A review[J].Food Chemistry,2021,355:129416.
[12] 李烜,罗登林,向进乐,等.菊粉的性质、功能及在食品中的应用进展[J].中国粮油学报,2021,36(4):185-192.
LI X,LUO D L,XIANG J L,et al.Physicochemical properties,functions and applications of inulin in food:A review[J].Journal of the Chinese Cereals and Oils Association,2021,36(4):185-192.
[13] 杨健,马永强,姚笛.四种低聚糖对乳酸菌体外增殖过程的影响研究[J].饲料研究,2020,43(4):75-80.
YANG J,MA Y Q,YAO D.Study on effect of four oligosaccharides on proliferation process of lactic acid bacteria in vitro[J].Feed Research,2020,43(4):75-80.
[14] 李雅丽,王默涵,周志桥.6种低聚糖对肠道益生菌生长情况的影响及代谢产物分析[J].食品科技,2021,46(3):7-13.
LI Y L,WANG M H,ZHOU Z Q.Effects of six oligosaccharides on the growth of intestinal probiotics and analysis of metabolites[J].Food Science and Technology,2021,46(3):7-13.
[15] 何君,韩育梅,刘敏,等.益生元在发酵乳中的应用研究进展[J].食品工业科技,2017,38(8):379-383.
HE J,HAN Y M,LIU M,et al.Progress of research on the application of prebiotics in fermented milk[J].Science and Technology of Food Industry,2017,38(8):379-383.
[16] ZHANG T,JEONG C H,CHENG W N,et al.Moringa extract enhances the fermentative,textural,and bioactive properties of yogurt[J].LWT,2019,101:276-284.
[17] CAO P,WU L Y,WU Z,et al.Effects of oligosaccharides on the fermentation properties of Lactobacillus plantarum[J].Journal of Dairy Science,2019,102(4):2 863-2 872.
[18] WARD R E,NIONUEVO M,MILLS D A,et al.In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri[J].Applied and Environmental Microbiology,2006,72(6):4 497-4 499.
[19] LEE J H,KARAMYCHEV V N,KOZYAVKIN S A,et al.Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth[J].BMC Genomics,2008,9:247.
[20] SHAFI A,FAROOQ U,AKRAM K,et al.Prevention and control of diseases by use of pro-and prebiotics(synbiotics)[J].Food Reviews International,2014,30(4):291-316.
[21] CERIELLO A,MOTZ E.Is oxidative stress the pathogenic mechanism underlying insulin resistance,diabetes,and cardiovascular disease? The common soil hypothesis revisited[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2004,24(5):816-823.
[22] SABEENA FARVIN K H,BARON C P,NIELSEN N S,et al.Antioxidant activity of yoghurt peptides:Part 1-in vitro assays and evaluation in ω-3 enriched milk[J].Food Chemistry,2010,123(4):1 081-1 089.
[23] CELEBIOGLU H U,OLESEN S V,PREHN K,et al.Mucin-and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM[J].Journal of Proteomics,2017,163:102-110.