综述与专题评论

纤维素结合多酚的作用机制及其对多酚特性影响的研究进展

  • 李舒婷 ,
  • 王琦 ,
  • 李正一 ,
  • 伍久林 ,
  • 陈雯 ,
  • 肖怡倩 ,
  • 郑亚凤
展开
  • 1(福建农林大学 食品科学学院,福建 福州,350002)
    2(福建省农业科学院 农业工程技术研究所,福建 福州,350003)
硕士研究生(郑亚凤教授为通信作者,E-mail:zyffst@163.com)

收稿日期: 2021-04-24

  修回日期: 2021-05-26

  网络出版日期: 2022-04-27

基金资助

国家自然科学基金青年项目(31901724);福州市科技计划-市校(院所)科技合作项目-科技成果转移转化项目(2019-G-46)

Progress on the interaction mechanism between cellulose and polyphenols and its influences on the functional properties of polyphenols

  • LI Shuting ,
  • WANG Qi ,
  • LI Zhengyi ,
  • WU Jiulin ,
  • CHEN Wen ,
  • XIAO Yiqian ,
  • ZHENG Yafeng
Expand
  • 1(College of Food Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
    2(Institute of Agriculture Engineering,Fujian Academy of Agricultural Sciences,Fuzhou 350003,China)

Received date: 2021-04-24

  Revised date: 2021-05-26

  Online published: 2022-04-27

摘要

多酚具有多种促进人体健康的生物功效,然而多酚的稳定性差,导致其生理活性和生物利用度较低。纤维素作为多酚的天然载体,在负载和保护多酚上具有很大的应用潜力。文章综述了纤维素与多酚相互作用机制的研究进展,讨论了影响其相互作用的多种因素以及纤维素对多酚功能性质的影响,为提高多酚的功能特性及其在健康食品中的应用提供新的思路与方法。

本文引用格式

李舒婷 , 王琦 , 李正一 , 伍久林 , 陈雯 , 肖怡倩 , 郑亚凤 . 纤维素结合多酚的作用机制及其对多酚特性影响的研究进展[J]. 食品与发酵工业, 2022 , 48(7) : 283 -289 . DOI: 10.13995/j.cnki.11-1802/ts.027813

Abstract

Polyphenols have a variety of biological effects to promote human health, but their poor stability leads to low physiological activity and bioavailability. Cellulose, as a natural carrier of polyphenols, has great application potential in loading and protecting polyphenols. This article reviewed the research progress of the interaction mechanism of cellulose and polyphenol, discussed multiple factors influence the interaction between them. In addition, we also introduced the recent researches on improving the interaction between cellulose and polyphenols, and discussed the influence of the complex on the functional properties of polyphenols. This review will provide new ideas and methods for improving the functional characteristics of polyphenols and their application in healthy foods.

参考文献

[1] 赵扬帆,郑宝东.植物多酚类物质及其功能学研究进展[J].福建轻纺,2006(11):107-110.
ZHAO Y F,ZHENG B D.Research progress on plant polyphenols and their functions[J].The Light & Textile Industries of Fujian,2006(11):107-110.
[2] 张杨波,饶甜甜,刘仲华.茶多酚的抗癌作用机制及EGCG纳米载体技术研究进展[J].食品工业科技,2019,40(16):343-348.
ZHANG Y B,RAO T T,LIU Z H.Research progress on the anticancer mechanism of tea polyphenol and EGCG nanocarrier technology.[J].Science and Technology of Food Industry,2019,40(16):343-348.
[3] 唐丽荣,黄彪,李涛,等.功能化修饰纳米纤维素的结肠靶向给药载体[J].科技导报,2014,32(4):22-28.
TANG L R,HUANG B,LI T,et al.Functionalized Cellulose Nanocrystals as a Carrier for Colon-targeted Drug Delivery System.[J].Science & Technology Review,2014,32(4):22-28.
[4] SUN B,ZHANG M,NI Y H.Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols[J].Cellulose,2018,25(9):5 157-5 173.
[5] PALAFOX-CARLOS H,AYALA-ZAVALA J F,GONZÁLEZ-AGUILAR G A.The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants[J].Journal of Food Science,2011,76(1):R6-R15.
[6] RENARD C M,WATRELOT A A,BOURVELLEC C L.Interactions between polyphenols and polysaccharides:Mechanisms and consequences in food processing and digestion[J].Trends in Food Science & Technology,2017(60):43-51.
[7] 祁洁,徐颖磊,梁文怡,等.EGCG纳米载体制备技术及其对EGCG活性影响的研究进展[J].茶叶科学,2017,37(2):119-129.
QI J,XU Y L,LIANG W Y,et al.Progress on the preparation technologies and the active improvement of EGCG nano-carriers[J].Journal of Tea Science,2017,37(2):119-129.
[8] 扈晓杰,韩冬,李铎.膳食纤维的定义、分析方法和摄入现状[J].中国食品学报,2011,11(3):133-137.
HU X J,HAN D,LI D.The definition,analytic methods and intake status of dietary fiber[J].Journal of Chinese Institute of Food Science and Technology,2011,11(3):133-137.
[9] 刘伟,刘成梅,林向阳.膳食纤维的国内外研究现状与发展趋势[J].粮食与食品工业,2003,10(4):25-27.
LIU W,LIU C M,LIN X Y.Present situation and prospect of studies on dietary fiber home and abroad[J].Cereal & Food Industry,2003,10(4):25-27.
[10] 王阳,赵国华,肖丽,等.源于食品加工副产物纳米纤维素晶体的制备及其在食品中的应用[J].食品与机械,2017,33(2):1-5;38.
WANG Y,ZHAO G H,XIAO L,et al.Preparation of nanocrystalline cellulose from food by-product and its application in food industry[J].Food & Machinery,2017,33(2):1-5;38.
[11] 叶代勇,黄洪,傅和青,等.纤维素化学研究进展[J].化工学报,2006,57(8):1 782-1 791.
YE D Y,HUANG H,FU H Q,et al.Advances in cellulose chemistry[J].Journal of Chemical Industry and Engineering(China),2006,57(8):1 782-1 791.
[12] 刘成梅,李资玲,梁瑞红,等.膳食纤维的生理功能与应用现状[J].食品研究与开发,2006,27(1):122-125.
LIU C M,LI Z L,LIANG D H,et al.The application actuality and physiological function of dietary fiber[J].Food Research and Development,2006,27(1):122-125.
[13] MAURER L H,CAZARIN C B B,QUATRIN A,et al.Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis:A major role for dietary fiber and fiber-bound polyphenols[J].Food Research International,2019,123:425-439.
[14] PADAYACHEE A,NETZEL G,NETZEL M,et al.Binding of polyphenols to plant cell wall analogues-Part 2:Phenolic acids[J].Food Chemistry,2012,135(4):2 287-2 292.
[15] 李锐,任海平,孙艳亭,等.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学,2006,34(12):1 801-1 806.
LI R,REN H P,SUN Y T,et al.Advances in non-covalent interaction analysis methods between small molecules and biomacromolecules[J].Chinese Journal of Analytical Chemistry,2006,34(12):1 801-1 806.
[16] PHAN A D T,NETZEL G,WANG D J,et al.Binding of dietary polyphenols to cellulose:Structural and nutritional aspects[J].Food Chemistry,2015,171:388-396.
[17] LIU D J,LOPEZ-SANCHEZ P,MARTINEZ-SANZ M,et al.Adsorption isotherm studies on the interaction between polyphenols and apple cell walls:Effects of variety,heating and drying[J].Food Chemistry,2019,282:58-66.
[18] PHAN A D T,D'ARCY B R,GIDLEY M J.Polyphenol-cellulose interactions:Effects of pH,temperature and salt[J].International Journal of Food Science & Technology,2016,51(1):203-211.
[19] RENARD C M G C,BARON A,GUYOT S,et al.Interactions between apple cell walls and native apple polyphenols:Quantification and some consequences[J].International Journal of Biological Macromolecules,2001,29(2):115-125.
[20] WU Z,LI H,MING J,et al.Optimization of adsorption of tea polyphenols into oat β-glucan using response surface methodology[J].Journal of Agricultural and Food Chemistry,2011,59(1):378-385.
[21] QUIRÓS-SAUCEDA A E,PALAFOX-CARLOS H,SÁYAGO-AYERDI S G,et al.Dietary fiber and phenolic compounds as functional ingredients:Interaction and possible effect after ingestion[J].Food & Function,2014,5(6):1 063-1 072.
[22] LI X H,LIU Y Z,YU Y Y,et al.Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity[J].Carbohydrate Polymers,2019,207:160-168.
[23] JAKOBEK L,MATIĆ P.Non-covalent dietary fiber-Polyphenol interactions and their influence on polyphenol bioaccessibility[J].Trends in Food Science & Technology,2019,83:235-247.
[24] PADAYACHEE A,NETZEL G,NETZEL M,et al.Binding of polyphenols to plant cell wall analogues-Part 1:Anthocyanins[J].Food Chemistry,2012,135(4):155-161.
[25] LIU D J,MARTINEZ-SANZ M,LOPEZ-SANCHEZ P,et al.Adsorption behaviour of polyphenols on cellulose is affected by processing history[J].Food Hydrocolloids,2017,63:496-507.
[26] WANG Y X,LIU J,CHEN F,et al.Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan[J].Journal of Agricultural and Food Chemistry,2013,61(19):4 533-4 538.
[27] FERNANDES A,BRÁS N F,MATEUS N,et al.Understanding the molecular mechanism of anthocyanin binding to pectin[J].Langmuir,2014,30(28):8 516-8 527.
[28] BOURVELLEC C L,GUYOT S,RENARD C M G C.Non-covalent interaction between procyanidins and apple cell wall material:Part I.Effect of some environmental parameters[J].Biochimica et Biophysica Acta,2004,1672(3):192-202.
[29] WATRELOT A A,LE BOURVELLEC C,IMBERTY A,et al.Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length[J].Biomacromolecules,2013,14(3):709-718.
[30] COSTA T D S,ROGEZ H,PENA R D S.Adsorption capacity of phenolic compounds onto cellulose and xylan[J].Food Science and Technology,2015,35(2):314-320.
[31] ZENG L,MA M J,LI C,et al.Stability of tea polyphenols solution with different pH at different temperatures[J].International Journal of Food Properties,2017,20(1):1-18.
[32] LIN Z,FISCHER J,WICKER L.Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J].Food Chemistry,2016,194:986-993.
[33] GOTO T,KONDO T.Structure and molecular stacking of anthocyanins—Flower color variation[J].Angewandte Chemie International Edition,1991,30(1):17-33.
[34] LIU Y J,YING D Y,SANGUANSRI L,et al.Comparison of the adsorption behaviour of catechin onto cellulose and pectin[J].Food Chemistry,2019,271:733-738.
[35] BOURVELLEC C L,QUERE J-M L,RENARD C M G.Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice:studies in model suspensions and application[J].Journal of Agricultural and Food Chemistry,2007,55(19):7 896-7 904.
[36] ZAINUDDIN N,AHMAD I,KARGARZADEH H,et al.Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin[J].Carbohydrate Polymers,2017,163:261-269.
[37] FOO M L,TAN C R,LIM P D,et al.Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin[J].International Journal of Biological Macromolecules,2019,138:1 064-1 071.
[38] LUO X L,WANG Q,FANG D Y,et al.Modification of insoluble dietary fibers from bamboo shoot shell:Structural characterization and functional properties[J].International Journal of Biological Macromolecules,2018,120:1 461-1 467.
[39] FANG D Y,WANG Q,CHEN C H,et al.Structural characteristics,physicochemical properties and prebiotic potential of modified dietary fiber from the basal part of bamboo shoot[J].International Journal of Food Science & Technology,2020,56(2):618-628.
[40] MU R J,HONG X,NI Y S,et al.Recent trends and applications of cellulose nanocrystals in food industry[J].Trends in Food Science & Technology,2019,93:136-144.
[41] LIU Y J,YING D Y,SANGUANSRI L,et al.Adsorption of catechin onto cellulose and its mechanism study:Kinetic models,characterization and molecular simulation[J].Food Research International,2018,112:225-232.
[42] PATEL A R,SEIJEN-TEN-HOORN J,VELIKOV K P.Colloidal complexes from associated water soluble cellulose derivative(methylcellulose) and green tea polyphenol(epigallocatechin gallate)[J].Journal of Colloid and Interface Science,2011,364(2):317-323.
[43] ZHENG L Q,DING Z S,ZHANG M,et al.Microencapsulation of bayberry polyphenols by ethyl cellulose:Preparation and characterization[J].Journal of Food Engineering,2011,104(1):89-95.
[44] TUOHY K M,CONTERNO L,GASPEROTTI M,et al.Up-regulating the human intestinal microbiome using whole plant foods,polyphenols,and/or fiber[J].Journal of Agricultural and Food Chemistry,2012,60(36):8 776-8 782.
[45] GEORGE D,BEGUM K M M S,MAHESWARI P U.Sugarcane bagasse(SCB) based pristine cellulose hydrogel for delivery of grape pomace polyphenol drug[J].Waste and Biomass Valorization,2020,11(3):851-860.
[46] GIL-SÁNCHEZ I,CUEVA C,SANZ-BUENHOMBRE M,et al.Dynamic gastrointestinal digestion of grape pomace extracts:Bioaccessible phenolic metabolites and impact on human gut microbiota[J].Journal of Food Composition and Analysis,2018,68:41-52.
[47] KALE R,SARAF M,JUVEKAR A,et al.Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system[J].Journal of Pharmacy and Pharmacology,2010,58(10):1 351-1 358.
[48] BOURVELLEC C L,RENARD C M G C L.Interactions between polyphenols and macromolecules:Quantification methods and mechanisms[J].Critical Reviews in Food Science and Nutrition,2012,52(3):213-248.
[49] PADAYACHEE A,NETZEL G,NETZEL M,et al.Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion[J].Food & Function,2013,4(6):906-916.
[50] PATEL A R,NIJSSE J,VELIKOV K P.Novel polymer-polyphenol beads for encapsulation and microreactor applications[J].Soft Matter,2011,7(9):4 294-4 301.
文章导航

/