[1] 赵扬帆,郑宝东.植物多酚类物质及其功能学研究进展[J].福建轻纺,2006(11):107-110.
ZHAO Y F,ZHENG B D.Research progress on plant polyphenols and their functions[J].The Light & Textile Industries of Fujian,2006(11):107-110.
[2] 张杨波,饶甜甜,刘仲华.茶多酚的抗癌作用机制及EGCG纳米载体技术研究进展[J].食品工业科技,2019,40(16):343-348.
ZHANG Y B,RAO T T,LIU Z H.Research progress on the anticancer mechanism of tea polyphenol and EGCG nanocarrier technology.[J].Science and Technology of Food Industry,2019,40(16):343-348.
[3] 唐丽荣,黄彪,李涛,等.功能化修饰纳米纤维素的结肠靶向给药载体[J].科技导报,2014,32(4):22-28.
TANG L R,HUANG B,LI T,et al.Functionalized Cellulose Nanocrystals as a Carrier for Colon-targeted Drug Delivery System.[J].Science & Technology Review,2014,32(4):22-28.
[4] SUN B,ZHANG M,NI Y H.Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols[J].Cellulose,2018,25(9):5 157-5 173.
[5] PALAFOX-CARLOS H,AYALA-ZAVALA J F,GONZÁLEZ-AGUILAR G A.The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants[J].Journal of Food Science,2011,76(1):R6-R15.
[6] RENARD C M,WATRELOT A A,BOURVELLEC C L.Interactions between polyphenols and polysaccharides:Mechanisms and consequences in food processing and digestion[J].Trends in Food Science & Technology,2017(60):43-51.
[7] 祁洁,徐颖磊,梁文怡,等.EGCG纳米载体制备技术及其对EGCG活性影响的研究进展[J].茶叶科学,2017,37(2):119-129.
QI J,XU Y L,LIANG W Y,et al.Progress on the preparation technologies and the active improvement of EGCG nano-carriers[J].Journal of Tea Science,2017,37(2):119-129.
[8] 扈晓杰,韩冬,李铎.膳食纤维的定义、分析方法和摄入现状[J].中国食品学报,2011,11(3):133-137.
HU X J,HAN D,LI D.The definition,analytic methods and intake status of dietary fiber[J].Journal of Chinese Institute of Food Science and Technology,2011,11(3):133-137.
[9] 刘伟,刘成梅,林向阳.膳食纤维的国内外研究现状与发展趋势[J].粮食与食品工业,2003,10(4):25-27.
LIU W,LIU C M,LIN X Y.Present situation and prospect of studies on dietary fiber home and abroad[J].Cereal & Food Industry,2003,10(4):25-27.
[10] 王阳,赵国华,肖丽,等.源于食品加工副产物纳米纤维素晶体的制备及其在食品中的应用[J].食品与机械,2017,33(2):1-5;38.
WANG Y,ZHAO G H,XIAO L,et al.Preparation of nanocrystalline cellulose from food by-product and its application in food industry[J].Food & Machinery,2017,33(2):1-5;38.
[11] 叶代勇,黄洪,傅和青,等.纤维素化学研究进展[J].化工学报,2006,57(8):1 782-1 791.
YE D Y,HUANG H,FU H Q,et al.Advances in cellulose chemistry[J].Journal of Chemical Industry and Engineering(China),2006,57(8):1 782-1 791.
[12] 刘成梅,李资玲,梁瑞红,等.膳食纤维的生理功能与应用现状[J].食品研究与开发,2006,27(1):122-125.
LIU C M,LI Z L,LIANG D H,et al.The application actuality and physiological function of dietary fiber[J].Food Research and Development,2006,27(1):122-125.
[13] MAURER L H,CAZARIN C B B,QUATRIN A,et al.Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis:A major role for dietary fiber and fiber-bound polyphenols[J].Food Research International,2019,123:425-439.
[14] PADAYACHEE A,NETZEL G,NETZEL M,et al.Binding of polyphenols to plant cell wall analogues-Part 2:Phenolic acids[J].Food Chemistry,2012,135(4):2 287-2 292.
[15] 李锐,任海平,孙艳亭,等.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学,2006,34(12):1 801-1 806.
LI R,REN H P,SUN Y T,et al.Advances in non-covalent interaction analysis methods between small molecules and biomacromolecules[J].Chinese Journal of Analytical Chemistry,2006,34(12):1 801-1 806.
[16] PHAN A D T,NETZEL G,WANG D J,et al.Binding of dietary polyphenols to cellulose:Structural and nutritional aspects[J].Food Chemistry,2015,171:388-396.
[17] LIU D J,LOPEZ-SANCHEZ P,MARTINEZ-SANZ M,et al.Adsorption isotherm studies on the interaction between polyphenols and apple cell walls:Effects of variety,heating and drying[J].Food Chemistry,2019,282:58-66.
[18] PHAN A D T,D'ARCY B R,GIDLEY M J.Polyphenol-cellulose interactions:Effects of pH,temperature and salt[J].International Journal of Food Science & Technology,2016,51(1):203-211.
[19] RENARD C M G C,BARON A,GUYOT S,et al.Interactions between apple cell walls and native apple polyphenols:Quantification and some consequences[J].International Journal of Biological Macromolecules,2001,29(2):115-125.
[20] WU Z,LI H,MING J,et al.Optimization of adsorption of tea polyphenols into oat β-glucan using response surface methodology[J].Journal of Agricultural and Food Chemistry,2011,59(1):378-385.
[21] QUIRÓS-SAUCEDA A E,PALAFOX-CARLOS H,SÁYAGO-AYERDI S G,et al.Dietary fiber and phenolic compounds as functional ingredients:Interaction and possible effect after ingestion[J].Food & Function,2014,5(6):1 063-1 072.
[22] LI X H,LIU Y Z,YU Y Y,et al.Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity[J].Carbohydrate Polymers,2019,207:160-168.
[23] JAKOBEK L,MATIĆ P.Non-covalent dietary fiber-Polyphenol interactions and their influence on polyphenol bioaccessibility[J].Trends in Food Science & Technology,2019,83:235-247.
[24] PADAYACHEE A,NETZEL G,NETZEL M,et al.Binding of polyphenols to plant cell wall analogues-Part 1:Anthocyanins[J].Food Chemistry,2012,135(4):155-161.
[25] LIU D J,MARTINEZ-SANZ M,LOPEZ-SANCHEZ P,et al.Adsorption behaviour of polyphenols on cellulose is affected by processing history[J].Food Hydrocolloids,2017,63:496-507.
[26] WANG Y X,LIU J,CHEN F,et al.Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan[J].Journal of Agricultural and Food Chemistry,2013,61(19):4 533-4 538.
[27] FERNANDES A,BRÁS N F,MATEUS N,et al.Understanding the molecular mechanism of anthocyanin binding to pectin[J].Langmuir,2014,30(28):8 516-8 527.
[28] BOURVELLEC C L,GUYOT S,RENARD C M G C.Non-covalent interaction between procyanidins and apple cell wall material:Part I.Effect of some environmental parameters[J].Biochimica et Biophysica Acta,2004,1672(3):192-202.
[29] WATRELOT A A,LE BOURVELLEC C,IMBERTY A,et al.Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length[J].Biomacromolecules,2013,14(3):709-718.
[30] COSTA T D S,ROGEZ H,PENA R D S.Adsorption capacity of phenolic compounds onto cellulose and xylan[J].Food Science and Technology,2015,35(2):314-320.
[31] ZENG L,MA M J,LI C,et al.Stability of tea polyphenols solution with different pH at different temperatures[J].International Journal of Food Properties,2017,20(1):1-18.
[32] LIN Z,FISCHER J,WICKER L.Intermolecular binding of blueberry pectin-rich fractions and anthocyanin[J].Food Chemistry,2016,194:986-993.
[33] GOTO T,KONDO T.Structure and molecular stacking of anthocyanins—Flower color variation[J].Angewandte Chemie International Edition,1991,30(1):17-33.
[34] LIU Y J,YING D Y,SANGUANSRI L,et al.Comparison of the adsorption behaviour of catechin onto cellulose and pectin[J].Food Chemistry,2019,271:733-738.
[35] BOURVELLEC C L,QUERE J-M L,RENARD C M G.Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice:studies in model suspensions and application[J].Journal of Agricultural and Food Chemistry,2007,55(19):7 896-7 904.
[36] ZAINUDDIN N,AHMAD I,KARGARZADEH H,et al.Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin[J].Carbohydrate Polymers,2017,163:261-269.
[37] FOO M L,TAN C R,LIM P D,et al.Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin[J].International Journal of Biological Macromolecules,2019,138:1 064-1 071.
[38] LUO X L,WANG Q,FANG D Y,et al.Modification of insoluble dietary fibers from bamboo shoot shell:Structural characterization and functional properties[J].International Journal of Biological Macromolecules,2018,120:1 461-1 467.
[39] FANG D Y,WANG Q,CHEN C H,et al.Structural characteristics,physicochemical properties and prebiotic potential of modified dietary fiber from the basal part of bamboo shoot[J].International Journal of Food Science & Technology,2020,56(2):618-628.
[40] MU R J,HONG X,NI Y S,et al.Recent trends and applications of cellulose nanocrystals in food industry[J].Trends in Food Science & Technology,2019,93:136-144.
[41] LIU Y J,YING D Y,SANGUANSRI L,et al.Adsorption of catechin onto cellulose and its mechanism study:Kinetic models,characterization and molecular simulation[J].Food Research International,2018,112:225-232.
[42] PATEL A R,SEIJEN-TEN-HOORN J,VELIKOV K P.Colloidal complexes from associated water soluble cellulose derivative(methylcellulose) and green tea polyphenol(epigallocatechin gallate)[J].Journal of Colloid and Interface Science,2011,364(2):317-323.
[43] ZHENG L Q,DING Z S,ZHANG M,et al.Microencapsulation of bayberry polyphenols by ethyl cellulose:Preparation and characterization[J].Journal of Food Engineering,2011,104(1):89-95.
[44] TUOHY K M,CONTERNO L,GASPEROTTI M,et al.Up-regulating the human intestinal microbiome using whole plant foods,polyphenols,and/or fiber[J].Journal of Agricultural and Food Chemistry,2012,60(36):8 776-8 782.
[45] GEORGE D,BEGUM K M M S,MAHESWARI P U.Sugarcane bagasse(SCB) based pristine cellulose hydrogel for delivery of grape pomace polyphenol drug[J].Waste and Biomass Valorization,2020,11(3):851-860.
[46] GIL-SÁNCHEZ I,CUEVA C,SANZ-BUENHOMBRE M,et al.Dynamic gastrointestinal digestion of grape pomace extracts:Bioaccessible phenolic metabolites and impact on human gut microbiota[J].Journal of Food Composition and Analysis,2018,68:41-52.
[47] KALE R,SARAF M,JUVEKAR A,et al.Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system[J].Journal of Pharmacy and Pharmacology,2010,58(10):1 351-1 358.
[48] BOURVELLEC C L,RENARD C M G C L.Interactions between polyphenols and macromolecules:Quantification methods and mechanisms[J].Critical Reviews in Food Science and Nutrition,2012,52(3):213-248.
[49] PADAYACHEE A,NETZEL G,NETZEL M,et al.Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion[J].Food & Function,2013,4(6):906-916.
[50] PATEL A R,NIJSSE J,VELIKOV K P.Novel polymer-polyphenol beads for encapsulation and microreactor applications[J].Soft Matter,2011,7(9):4 294-4 301.