[1] TYO K E,ALPER H S,STEPHANOPOULOS G N.Expanding the metabolic engineering toolbox:More options to engineer cells[J].Trends in Biotechnology,2007,25(3):132-137.
[2] 于慧敏,王勇.全局转录机器工程——工业生物技术新方法[J].生物产业技术,2009(4):42-46.
YU H M,WANG Y.Global transcription machine engineering-a new method of industrial biotechnology[J].Biotechnology Business,2009(4):42-46.
[3] FRENDORF P O,LAURITSEN I,SEKOWSKA A,et al.Mutations in the global transcription factor CRP/CAP:Insights from experimental evolution and deep sequencing[J].Computational and Structural Biotechnology Journal,2019,17:730-736.
[4] LIU W S,JIANG R R.Combinatorial and high-throughput screening approaches for strain engineering[J].Applied Microbiology and Biotechnology,2015,99(5):2 093-2 104.
[5] BASAK S.JIANG R.Enhancing Escherichia coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein(CRP)[J].PLoS One 2012,7(12):e51179.
[6] GAO X X,YANG X F,LI J H,et al.Engineered global regulator H-NS improves the acid tolerance of E.coli[J].Microbial Cell Factories,2018,17(1):118.
[7] CABEZAS C E,LAULIÉ A M,BRIONES A C,et al.Activation of regulator ArcA in the presence of hypochlorite in Salmonella enterica serovar Typhimurium[J].Biochimie,2021,180:178-185.
[8] EL-ROTAIL A A M M,ZHANG L,LI Y R,et al.A novel constructed SPT15 mutagenesis library of Saccharomyces cerevisiae by using gTME technique for enhanced ethanol production[J].AMB Express,2017,7(1):111.
[9] LEE J Y,YANG K S,JANG S A,et al.Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries[J].Biotechnology and Bioengineering,2011,108(4):742-749.
[10] ALPER H,STEPHANOPOULOS G.Global transcription machinery engineering:A new approach for improving cellular phenotype[J].Metabolic Engineering 2007,9(3):258-267.
[11] CHONG H Q,HUANG L,YEOW J,et al.Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein(CRP)[J].PLoS One,2013,8(2):e57628.
[12] BASAK S,SONG H,JIANG R,et al.Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent(toluene) tolerance[J].Process Biochemistry 2012,47(12):2 152-2 158.
[13] KURODA K,UEDA M.Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering,2017,124(6):599-605.
[14] ALPER H,MOXLEY J,NEVOIGT E,et al.Engineering yeast transcription machinery for improved ethanol tolerance and production[J].Science,2006,314(5 805):1 565-1 568.
[15] NISHIDA N,JING D Y,KURODA K,et al.Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae[J].Current Genetics,2014,60(3):149-162.
[16] MCKENNA R,LOMBANA T N,YAMADA M. et al.Engineered sigma factors increase full-length antibody expression in Escherichia coli[J].Metabolic Engineering 2019,52:315-323.
[17] YU H M,TYO K,ALPER H,et al.A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors[J].Biotechnology and Bioengineering,2008,101(4):788-796.
[18] 周筱飞. 全局转录工程选育L-异亮氨酸高产菌株[D].福州:福建师范大学,2015.
ZHOU X F.Breeding of L-Isoleucine high-producing strains by global transcription engineering[D].Fuzhou:Fujian Normal University,2015.
[19] ZHANG F,QIAN X,SI H.Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering[J].Microbial Cell Factories,2015,14,175.
[20] GAO X,JIANG L,ZHU L Y,et al.Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs[J].Journal of Biotechnology,2016,224:55-63.
[21] CHEN T J,WANG J Q,YANG R,et al.Laboratory-evolved mutants of an exogenous global regulator,IrrE from Deinococcus radiodurans,enhance stress tolerances of Escherichia coli[J].PLoS One,2011,6(1):e16228.
[22] ZHANG H F,CHONG H Q,CHING C B,et al.Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J].Applied Microbiology and Biotechnology,2012,94(4):1 107-1 117.
[23] 赵心清, 姜如娇,李宁,等.利用SPT3的定向进化提高工业酿酒酵母乙醇耐受性[J].生物工程学报,2010,26(02):159-164.
ZHAO X Q,JIANG R Q.LI N.et al Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3[J].Chinese Journal of Biotechnology,2010,26(2):159-164.
[24] XUE T,CHEN D,SU Q Q,et al.Improved ethanol tolerance and production of Saccharomyces cerevisiae by global transcription machinery engineering via directed evolution of the SPT8 gene[J].Food Biotechnology,2019,33(2):155-173.
[25] ZHAO H W,LI J Y,HAN B Z,et al.Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering[J].Journal of Industrial Microbiology and Biotechnology,2014,41(5):869-878.
[26] NISHIDA N,OZATO N,JING D Y,et al.ABC transporters and cell wall proteins involved in yeast organic solvent tolerance[J].New Biotechnology,2012,29:S104.
[27] 张立伟. 全局转录工程选育耐乳酸鼠李糖乳酸杆菌[D].武汉:华中科技大学,2013.
ZHANG L W.Breeding of Lactobacillus rhamnosus resistant Lactobacillus by global transcription engineering[D].Wuhan:Huazhong University of Science and Technology,2013.
[28] LU W W,WANG Y,WANG T,et al.The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment[J].Applied and Environmental Microbiology,2015,81(7):2 349-2 358.
[29] TAN F R,WU B,DAI L C,et al.Using global transcription machinery engineering(gTME) to improve ethanol tolerance of Zymomonas mobilis[J].Microbial Cell Factories,2016,15(1):1-9.
[30] MARCUSCHAMER D K,STEPHANOPOULOS G.Accessing the potential of mutational strategies to elicit new phenotypes in industrial strains[J].Proceedings of the National Academy of Science,2008,105(7):2 319-2 324.
[31] WANG K,WANG X,GE X Z,et al.Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol[J].Indian Journal of Microbiology,2012,52(3):478-483.
[32] 郭学武,张玉,关翔宇,等.产2,3-丁二醇高木糖耐性肺炎克雷伯氏菌转录组学分析与发酵优化[J].生物技术通报,2018,34(8):159-169.
GUO X W,ZHANG Y,GUAN X Y.et al. Transcriptomics analysis and fermentation optimization of 2,3-butanediol-producing high xylose tolerance Klebsiella pneumoniae[J].Biotechnology Bulletin,2018,34(8):159-169.
[33] HONG S H,WANG X X,WOOD T K.Controlling biofilm formation,prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli[J].Microbial Biotechnology,2010,3(3):344-356.
[34] 黄瑛,蔡勇,杨江科,等.基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化[J].生物工程学报,2008,24(3):445-451.
HUANG Y,CAI Y,YANG J K.et al Directed evolution of lipase of Bacillus pumilus YZ02 by error-prone PCR[J].Chinese Journal of Biotechnology.,2008,24(3):445-451.
[35] SANTOS C N S,STEPHANOPOULOS G.Combinatorial engineering of microbes for optimizing cellular phenotype[J].Current Opinion in Chemical Biology,2008,12(2):168-176.
[36] HALPERIN S O,TOU C J,WONG E B,et al.CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window[J].Nature,2018,560(7 717):248-252.
[37] YIN L H,HU X Q,XU D Q,et al.Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum[J].Metabolic Engineering,2012,14(5):542-550.
[38] HUANG L,PU Y,YANG X L,et al.Engineering of global regulator cAMP receptor protein(CRP) in Escherichia coli for improved lycopene production[J].Journal of Biotechnology,2015,199:55-61.
[39] CHOI J E,NA H Y,YANG T H,et al.A lipophilic fluorescent LipidGreen1-based quantification method for high-throughput screening analysis of intracellular poly-3-hydroxybutyrate[J].AMB Express,2015,5(1):131.
[40] ZHANG X,ZHANG X M,XU G Q,et al.Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2018,102(14):5 939-5 951.