综述与专题评论

全局转录机器工程调控微生物代谢的应用进展

  • 田鑫 ,
  • 戴健欣 ,
  • 田园 ,
  • 王光强 ,
  • 艾连中 ,
  • 熊智强
展开
  • (上海理工大学 健康科学与工程学院,上海食品微生物工程研究中心,上海,200093)
硕士研究生(熊智强教授为通信作者,E-mail: xiongzq@hotmail.com)

收稿日期: 2021-07-13

  修回日期: 2021-09-07

  网络出版日期: 2022-04-27

基金资助

上海市自然科学基金项目(18ZR1426800);上海食品微生物工程技术研究中心项目(19DZ2281100)

Progress in the microbial metabolism by global transcription machinery engineering regulation

  • TIAN Xin ,
  • DAI Jianxin ,
  • TIAN Yuan ,
  • WANG Guangqiang ,
  • AI Lianzhong ,
  • XIONG Zhiqiang
Expand
  • (School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

Received date: 2021-07-13

  Revised date: 2021-09-07

  Online published: 2022-04-27

摘要

全局转录机器工程(global transcription machinery engineering,gTME)采用微生物作为“细胞工厂”从转录水平扰动基因表达,直接或间接操纵全局转录调控网络,是一种在基因和细胞水平改造微生物、强化目标性能的高效方法。近年来gTME在增强菌株耐受性、提高应答反应能力、高产代谢产物等方面被广泛应用,较传统方法具有快速优化代谢途径、显著提高产物效率等优势。该文综述了gTME分子机制、在应变工程和代谢工程中最新进展及相配合的进化手段,以及高通量筛选策略,以期为微生物改造和代谢工程研究提供帮助。

本文引用格式

田鑫 , 戴健欣 , 田园 , 王光强 , 艾连中 , 熊智强 . 全局转录机器工程调控微生物代谢的应用进展[J]. 食品与发酵工业, 2022 , 48(7) : 298 -303 . DOI: 10.13995/j.cnki.11-1802/ts.028610

Abstract

Global transcription machinery engineering(gTME) uses microorganisms as “cell factories” to perturb gene expression at the transcription level and directly or indirectly manipulate the global transcriptional regulatory network.It is a powerful technology of engineered microorganisms to enhance target performance at the gene and cell level.In recent years,gTME has been widely used in enhancing strain tolerance,improving response capacity,and increasing the yield of metabolites.Compared with traditional methods,gTME has the advantages of optimizing metabolic pathways rapidly and improving product efficiency significantly.This article reviews the molecular mechanism of gTME,the latest progress in strain engineering and metabolic engineering,and the corresponding evolutionary means and high-throughput screening strategies,with a view to providing the help for microbial modification and metabolic engineering research.

参考文献

[1] TYO K E,ALPER H S,STEPHANOPOULOS G N.Expanding the metabolic engineering toolbox:More options to engineer cells[J].Trends in Biotechnology,2007,25(3):132-137.
[2] 于慧敏,王勇.全局转录机器工程——工业生物技术新方法[J].生物产业技术,2009(4):42-46.
YU H M,WANG Y.Global transcription machine engineering-a new method of industrial biotechnology[J].Biotechnology Business,2009(4):42-46.
[3] FRENDORF P O,LAURITSEN I,SEKOWSKA A,et al.Mutations in the global transcription factor CRP/CAP:Insights from experimental evolution and deep sequencing[J].Computational and Structural Biotechnology Journal,2019,17:730-736.
[4] LIU W S,JIANG R R.Combinatorial and high-throughput screening approaches for strain engineering[J].Applied Microbiology and Biotechnology,2015,99(5):2 093-2 104.
[5] BASAK S.JIANG R.Enhancing Escherichia coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein(CRP)[J].PLoS One 2012,7(12):e51179.
[6] GAO X X,YANG X F,LI J H,et al.Engineered global regulator H-NS improves the acid tolerance of E.coli[J].Microbial Cell Factories,2018,17(1):118.
[7] CABEZAS C E,LAULIÉ A M,BRIONES A C,et al.Activation of regulator ArcA in the presence of hypochlorite in Salmonella enterica serovar Typhimurium[J].Biochimie,2021,180:178-185.
[8] EL-ROTAIL A A M M,ZHANG L,LI Y R,et al.A novel constructed SPT15 mutagenesis library of Saccharomyces cerevisiae by using gTME technique for enhanced ethanol production[J].AMB Express,2017,7(1):111.
[9] LEE J Y,YANG K S,JANG S A,et al.Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries[J].Biotechnology and Bioengineering,2011,108(4):742-749.
[10] ALPER H,STEPHANOPOULOS G.Global transcription machinery engineering:A new approach for improving cellular phenotype[J].Metabolic Engineering 2007,9(3):258-267.
[11] CHONG H Q,HUANG L,YEOW J,et al.Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein(CRP)[J].PLoS One,2013,8(2):e57628.
[12] BASAK S,SONG H,JIANG R,et al.Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent(toluene) tolerance[J].Process Biochemistry 2012,47(12):2 152-2 158.
[13] KURODA K,UEDA M.Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering,2017,124(6):599-605.
[14] ALPER H,MOXLEY J,NEVOIGT E,et al.Engineering yeast transcription machinery for improved ethanol tolerance and production[J].Science,2006,314(5 805):1 565-1 568.
[15] NISHIDA N,JING D Y,KURODA K,et al.Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae[J].Current Genetics,2014,60(3):149-162.
[16] MCKENNA R,LOMBANA T N,YAMADA M. et al.Engineered sigma factors increase full-length antibody expression in Escherichia coli[J].Metabolic Engineering 2019,52:315-323.
[17] YU H M,TYO K,ALPER H,et al.A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors[J].Biotechnology and Bioengineering,2008,101(4):788-796.
[18] 周筱飞. 全局转录工程选育L-异亮氨酸高产菌株[D].福州:福建师范大学,2015.
ZHOU X F.Breeding of L-Isoleucine high-producing strains by global transcription engineering[D].Fuzhou:Fujian Normal University,2015.
[19] ZHANG F,QIAN X,SI H.Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering[J].Microbial Cell Factories,2015,14,175.
[20] GAO X,JIANG L,ZHU L Y,et al.Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs[J].Journal of Biotechnology,2016,224:55-63.
[21] CHEN T J,WANG J Q,YANG R,et al.Laboratory-evolved mutants of an exogenous global regulator,IrrE from Deinococcus radiodurans,enhance stress tolerances of Escherichia coli[J].PLoS One,2011,6(1):e16228.
[22] ZHANG H F,CHONG H Q,CHING C B,et al.Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J].Applied Microbiology and Biotechnology,2012,94(4):1 107-1 117.
[23] 赵心清, 姜如娇,李宁,等.利用SPT3的定向进化提高工业酿酒酵母乙醇耐受性[J].生物工程学报,2010,26(02):159-164.
ZHAO X Q,JIANG R Q.LI N.et al Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3[J].Chinese Journal of Biotechnology,2010,26(2):159-164.
[24] XUE T,CHEN D,SU Q Q,et al.Improved ethanol tolerance and production of Saccharomyces cerevisiae by global transcription machinery engineering via directed evolution of the SPT8 gene[J].Food Biotechnology,2019,33(2):155-173.
[25] ZHAO H W,LI J Y,HAN B Z,et al.Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering[J].Journal of Industrial Microbiology and Biotechnology,2014,41(5):869-878.
[26] NISHIDA N,OZATO N,JING D Y,et al.ABC transporters and cell wall proteins involved in yeast organic solvent tolerance[J].New Biotechnology,2012,29:S104.
[27] 张立伟. 全局转录工程选育耐乳酸鼠李糖乳酸杆菌[D].武汉:华中科技大学,2013.
ZHANG L W.Breeding of Lactobacillus rhamnosus resistant Lactobacillus by global transcription engineering[D].Wuhan:Huazhong University of Science and Technology,2013.
[28] LU W W,WANG Y,WANG T,et al.The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment[J].Applied and Environmental Microbiology,2015,81(7):2 349-2 358.
[29] TAN F R,WU B,DAI L C,et al.Using global transcription machinery engineering(gTME) to improve ethanol tolerance of Zymomonas mobilis[J].Microbial Cell Factories,2016,15(1):1-9.
[30] MARCUSCHAMER D K,STEPHANOPOULOS G.Accessing the potential of mutational strategies to elicit new phenotypes in industrial strains[J].Proceedings of the National Academy of Science,2008,105(7):2 319-2 324.
[31] WANG K,WANG X,GE X Z,et al.Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol[J].Indian Journal of Microbiology,2012,52(3):478-483.
[32] 郭学武,张玉,关翔宇,等.产2,3-丁二醇高木糖耐性肺炎克雷伯氏菌转录组学分析与发酵优化[J].生物技术通报,2018,34(8):159-169.
GUO X W,ZHANG Y,GUAN X Y.et al. Transcriptomics analysis and fermentation optimization of 2,3-butanediol-producing high xylose tolerance Klebsiella pneumoniae[J].Biotechnology Bulletin,2018,34(8):159-169.
[33] HONG S H,WANG X X,WOOD T K.Controlling biofilm formation,prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli[J].Microbial Biotechnology,2010,3(3):344-356.
[34] 黄瑛,蔡勇,杨江科,等.基于易错PCR技术的短小芽孢杆菌YZ02脂肪酶基因BpL的定向进化[J].生物工程学报,2008,24(3):445-451.
HUANG Y,CAI Y,YANG J K.et al Directed evolution of lipase of Bacillus pumilus YZ02 by error-prone PCR[J].Chinese Journal of Biotechnology.,2008,24(3):445-451.
[35] SANTOS C N S,STEPHANOPOULOS G.Combinatorial engineering of microbes for optimizing cellular phenotype[J].Current Opinion in Chemical Biology,2008,12(2):168-176.
[36] HALPERIN S O,TOU C J,WONG E B,et al.CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window[J].Nature,2018,560(7 717):248-252.
[37] YIN L H,HU X Q,XU D Q,et al.Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum[J].Metabolic Engineering,2012,14(5):542-550.
[38] HUANG L,PU Y,YANG X L,et al.Engineering of global regulator cAMP receptor protein(CRP) in Escherichia coli for improved lycopene production[J].Journal of Biotechnology,2015,199:55-61.
[39] CHOI J E,NA H Y,YANG T H,et al.A lipophilic fluorescent LipidGreen1-based quantification method for high-throughput screening analysis of intracellular poly-3-hydroxybutyrate[J].AMB Express,2015,5(1):131.
[40] ZHANG X,ZHANG X M,XU G Q,et al.Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2018,102(14):5 939-5 951.
文章导航

/