为提高L-苯丙氨酸生产效率,降低发酵成本,该研究将FeSO4·7H2O、MnSO4·H2O等用量进行进一步优化,去除了维生素H的添加,并引进了磷酸吡哆醛、维生素B2等微量元素,通过单因素试验、正交试验、发酵罐验证实验,以关键酶活、L-苯丙氨酸产量、糖酸转化率、副产物含量等为指标,最终确定了适合L-苯丙氨酸发酵的微量元素种类为及用量分别为:CaCl2·2H2O 1.1×10-2 g/L、CuSO4·5H2O 4.7×10-4 g/L、CoCl2·6H2O 6×10-3 g/L、ZnSO4 6×10-4g/L、FeSO4·7H2O 2.8×10-2 g/L、MnSO4·H2O 1.4×10-2 g/L、NiCl2·6H2O 6.06×10-3 g/L、PLP 9.5×10-3 g/L、维生素B2 6×10-3 g/L。最终优化后生物量为122.8,L-苯丙氨酸产量为85.4 g/L,糖酸转化率为26.3%,分别较不添加微量元素的对照组提高了17.5%、51.4%、18.6%,同时减少了副产物的种类和生成量,提高了关键酶活力。最终结果表明,优化后的微量元素种类及用量提高了L-苯丙氨酸的产量、糖酸转化率,提高了产品竞争力。
In order to improve the production efficiency of L-phenylalanine and reduce the cost of fermentation, the dosage of FeSO4·7H2O/MnSO4·H2O was further optimized. Biotin H was no longer added, and trace elements such as pyridoxal phosphate and vitamin B2 were added. Through single factor experiment, orthogonal test and fermentor verification experiment, the key enzyme activity, L-phenylalanine yield, sugar-acid conversion rate and by-product content were taken as indexes. Finally, the types and dosage of trace elements which is suitable for L-phenylalanine fermentation were determined as follows: CaCl2·2H2O 1.1×10-2 g/L, CuSO4·5H2O 4.7×10-4 g/L,CoCl2·6H2O 6×10-3 g/L, ZnSO4 6×10-4 g/L, FeSO4·7H2O 2.8×10-2 g/L, MnSO4·H2O 1.4×10-2 g/L, NiCl2·6H2O 6.06×10-3 g/L, PLP 9.5×10-3 g/L, vitamin B2 6×10-3 g/L. The final biomass was 122.8, the yield of L-phenylalanine was 85.4 g/L, and the conversion rate of sugar and acid was 26.3%, which was 17.5%, 51.4% and 18.6% higher than that of the control group without trace elements, respectively. At the same time, the variety and production of by-products were reduced, and the key enzyme activity was improved. The final result showed that the optimized type and dosage of trace elements could increase the sugar-acid conversion rate of L-phenylalanine and improve the competitiveness of the product.
[1] LIU X Z, NIU H, LI Q, et al.Metabolic engineering for the production of L-phenylalanine in Escherichia coli[J].3 Biotech, 2019, 9(3):85-93.
[2] 江晶洁, 刘涛, 林双君.基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J].生命科学, 2019, 31(5):430-448.
JIANG J J, LIU T, LIN S J.Research progress on the biosynthesis of aromatic compounds by microorganisms[J].Chinese Bulletin of Life Sciences, 2019, 31(5):430-448.
[3] WU J, LIU Y F, ZHAO S, et al.Application of dynamic regulation to increase L-phenylalanine production in Escherichia coli[J].Journal of Microbiology and Biotechnology, 2019, 29(6):923-932.
[4] 门佳轩, 熊博, 郝亚男, 等.代谢工程优化大肠杆菌高效合成L-苯丙氨酸[J].食品科学, 2021, 42(2):114-120.
MEN J X, XIONG B, HAO Y N, et al.Metabolic engineering of Escherichia coli for efficient synthesis of L-phenylalanine[J].Food Science, 2021, 42(2):114-120.
[5] ZHOU H Y, LIAO X Y, WANG T W, et al.Enhanced L-phenylalanine biosynthesis by co-expression of pheAfbr and aroFwt[J].Bioresource Technology, 2010, 101(11):4 151-4 156.
[6] 王镜岩. 生物化学[M].第三版.北京:高等教育出版社, 2009:380-381.
WANG J Y, Biochemistry[M].3th ed.Beijing:Higher Education Press, 2009:380-381.
[7] VITRESCHAK A G, RODIONOV D A, MIRONOV A A, et al.Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation[J].Nucleic Acids Research,2002, 30(14):3 141-3 151.
[8] 蔺兴法. 枯草芽孢杆菌X42产核黄素发酵过程优化[D].天津:天津大学, 2010.
LIN X F.Study on optimization of riboflavin fermentation by B.subtilis X42[D].Tianjin:Tianjin University, 2010.
[9] KERRY J A, KWOK F.Purification and characterization of pyridoxal kinase from human erythrocytes[J].Preparative Biochemistry, 1986, 16(3):199-216.
[10] 徐达, 梅漫莉, 徐庆阳, 等.生物素对L-缬氨酸发酵的影响[J].食品科学, 2019, 40(22):213-218.
XU D, MEI M L, XU Q Y, et al.Effect of biotin addition on microbial production of L-valine[J].Food Science, 2019, 40(22):213-218.
[11] 张玉富, 熊海波, 徐庆阳, 等.生物素及膜偶联间歇透析发酵对黄色短杆菌生产L-亮氨酸的影响[J].食品与发酵工业, 2019, 45(9):15-20.
ZHANG Y F, XIONG H B, XU Q Y, et al.Effects of biotin and membrane coupled intermittent dialysis fermentation on the production of L-leucine by Brevibacterium flavum[J].Food and Fermentation Industries, 2019, 45(9):15-20.
[12] BÁEZ-VIVEROS J L,OSUNA J,HERNÁNDEZ-CHÁVEZ G, et al.Metabolic engineering and protein directed evolution increase the yield of L-Phenylalanine synthesized from glucose in Escherichia coli[J].Biotechnology & Bioengineering, 2010, 87(4):516-524.
[13] 徐达, 梅漫莉, 徐庆阳.氯化胆碱对L-缬氨酸发酵的影响[J].食品与发酵工业, 2019, 45(17):14-19.
XU D, MEI M L, XU Q Y.Effects of choline chloride on L-valine fermentation[J].Food and Fermentation Industries, 2019, 45(17):14-19.
[14] 郝大利. 大肠杆菌色氨酸代谢途径关键酶基因aroG的定点突变与基因trpBA的共表达[D].无锡: 江南大学, 2013.
HAO D L.Site-directed mutagenesis and expression of the key enzyme gene (aroG,trpBA) of tryptophan pathways synthesis in the E.coli[D].WuXi: Jiangnan University, 2013.
[15] NELMS J, EDWARDS R M, WARWICK J, et al.Novel mutations in the PheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase[J].Applied and Environmental Microbiology, 1992, 58(8):2 592-2 598.
[16] 唐红梅. 副干酪乳杆菌芳香族氨基酸转氨酶克隆表达及其酶学性质研究[D].苏州:苏州大学, 2013.
TANG H M.Clonging, expression and properties of aromatic aminotransferase from Lactobacillus paracasei[D].Suzhou:Suzhou University, 2013.
[17] 熊海波, 刘云鹏, 徐庆阳.超声对谷氨酸棒杆菌发酵L-异亮氨酸的影响[J].食品与发酵工业, 2021, 47(4):40-46.
XIONG H B, LIU Y P, XU Q Y.Effect of ultrasound on L-isoleucine fermented by Corynebacterium glutamate[J].Food and Fermentation Industries, 2021, 47(4):40-46.
[18] ANDREWS S C, ROBINSON A K, RODRGUEZ-QUIÍONES F.Bacterial iron homeostasis[J].FEMS Microbiology Reviews, 2003, 27(2-3):215-237.
[19] TOUATI D.Iron and oxidative stress in bacteria[J].Archives of Biochemistry & Biophysics, 2000, 373(1):1-6.
[20] 陈宁. 氨基酸工艺学[M].北京:中国轻工业出版社, 2013:42-46.
CHEN N. Amino Acid Technology[M].Beijing:China Light Industry Publishing House, 2013:42-46.
[21] STEPHENS C M, BAUERLE R.Analysis of the metal requirement of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli[J].Journal of Biological Chemistry, 1991, 266(31):20 810-20 817.
[22] BALACHANDRAN N, HEIMHALT M, LIUNI P, et al.Potent inhibition of 3-deoxy-d-arabinoheptulosonate-7-phosphate(DAHP) synthase by DAHP oxime, a phosphate group mimic[J].Biochemistry, 2016, 55(48):6 617-6 629.
[23] TAKORS R.Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production[J].Biotechnology Progress, 2004, 20(1):57-64.
[24] 潘海亮. 高效利用水稻秸秆产L-丙氨酸大肠杆菌工程菌的构建及其发酵研究[D].武汉:湖北工业大学, 2020.
PAN H L.Effect fermentation of rice straw for L-alanine by metabolically engineered Escherichia coli[D].Wuhan:Hubei University of Technology, 2020.