研究报告

微量元素与生长因子对L-苯丙氨酸发酵的影响

  • 陈志超 ,
  • 王金多 ,
  • 徐庆阳
展开
  • 1(天津科技大学 生物工程学院,天津,300457)
    2(天津市氨基酸高效绿色制造工程实验室,天津,300457)
    3(代谢控制发酵技术国家地方联合工程实验室,天津,300457)
第一作者:硕士研究生(徐庆阳副研究员为通信作者,E-mail:xuqingyang@tust.edu.cn)

收稿日期: 2021-09-07

  修回日期: 2021-09-18

  网络出版日期: 2022-05-18

基金资助

天津市合成生物技术创新能力提升行动项目(TSBICIP-KJGG-005)

Effects of trace elements and growth factors on L-phenylalanine fermentation

  • CHEN Zhichao ,
  • WANG Jinduo ,
  • XU Qingyang
Expand
  • 1(College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
    2(Tianjin Engineering Lab of Efficient and Green Amino Acid Manufacture, Tianjin 300457, China)
    3(National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China)

Received date: 2021-09-07

  Revised date: 2021-09-18

  Online published: 2022-05-18

摘要

为提高L-苯丙氨酸生产效率,降低发酵成本,该研究将FeSO4·7H2O、MnSO4·H2O等用量进行进一步优化,去除了维生素H的添加,并引进了磷酸吡哆醛、维生素B2等微量元素,通过单因素试验、正交试验、发酵罐验证实验,以关键酶活、L-苯丙氨酸产量、糖酸转化率、副产物含量等为指标,最终确定了适合L-苯丙氨酸发酵的微量元素种类为及用量分别为:CaCl2·2H2O 1.1×10-2 g/L、CuSO4·5H2O 4.7×10-4 g/L、CoCl2·6H2O 6×10-3 g/L、ZnSO4 6×10-4g/L、FeSO4·7H2O 2.8×10-2 g/L、MnSO4·H2O 1.4×10-2 g/L、NiCl2·6H2O 6.06×10-3 g/L、PLP 9.5×10-3 g/L、维生素B2 6×10-3 g/L。最终优化后生物量为122.8,L-苯丙氨酸产量为85.4 g/L,糖酸转化率为26.3%,分别较不添加微量元素的对照组提高了17.5%、51.4%、18.6%,同时减少了副产物的种类和生成量,提高了关键酶活力。最终结果表明,优化后的微量元素种类及用量提高了L-苯丙氨酸的产量、糖酸转化率,提高了产品竞争力。

本文引用格式

陈志超 , 王金多 , 徐庆阳 . 微量元素与生长因子对L-苯丙氨酸发酵的影响[J]. 食品与发酵工业, 2022 , 48(8) : 82 -89 . DOI: 10.13995/j.cnki.11-1802/ts.029203

Abstract

In order to improve the production efficiency of L-phenylalanine and reduce the cost of fermentation, the dosage of FeSO4·7H2O/MnSO4·H2O was further optimized. Biotin H was no longer added, and trace elements such as pyridoxal phosphate and vitamin B2 were added. Through single factor experiment, orthogonal test and fermentor verification experiment, the key enzyme activity, L-phenylalanine yield, sugar-acid conversion rate and by-product content were taken as indexes. Finally, the types and dosage of trace elements which is suitable for L-phenylalanine fermentation were determined as follows: CaCl2·2H2O 1.1×10-2 g/L, CuSO4·5H2O 4.7×10-4 g/L,CoCl2·6H2O 6×10-3 g/L, ZnSO4 6×10-4 g/L, FeSO4·7H2O 2.8×10-2 g/L, MnSO4·H2O 1.4×10-2 g/L, NiCl2·6H2O 6.06×10-3 g/L, PLP 9.5×10-3 g/L, vitamin B2 6×10-3 g/L. The final biomass was 122.8, the yield of L-phenylalanine was 85.4 g/L, and the conversion rate of sugar and acid was 26.3%, which was 17.5%, 51.4% and 18.6% higher than that of the control group without trace elements, respectively. At the same time, the variety and production of by-products were reduced, and the key enzyme activity was improved. The final result showed that the optimized type and dosage of trace elements could increase the sugar-acid conversion rate of L-phenylalanine and improve the competitiveness of the product.

参考文献

[1] LIU X Z, NIU H, LI Q, et al.Metabolic engineering for the production of L-phenylalanine in Escherichia coli[J].3 Biotech, 2019, 9(3):85-93.
[2] 江晶洁, 刘涛, 林双君.基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J].生命科学, 2019, 31(5):430-448.
JIANG J J, LIU T, LIN S J.Research progress on the biosynthesis of aromatic compounds by microorganisms[J].Chinese Bulletin of Life Sciences, 2019, 31(5):430-448.
[3] WU J, LIU Y F, ZHAO S, et al.Application of dynamic regulation to increase L-phenylalanine production in Escherichia coli[J].Journal of Microbiology and Biotechnology, 2019, 29(6):923-932.
[4] 门佳轩, 熊博, 郝亚男, 等.代谢工程优化大肠杆菌高效合成L-苯丙氨酸[J].食品科学, 2021, 42(2):114-120.
MEN J X, XIONG B, HAO Y N, et al.Metabolic engineering of Escherichia coli for efficient synthesis of L-phenylalanine[J].Food Science, 2021, 42(2):114-120.
[5] ZHOU H Y, LIAO X Y, WANG T W, et al.Enhanced L-phenylalanine biosynthesis by co-expression of pheAfbr and aroFwt[J].Bioresource Technology, 2010, 101(11):4 151-4 156.
[6] 王镜岩. 生物化学[M].第三版.北京:高等教育出版社, 2009:380-381.
WANG J Y, Biochemistry[M].3th ed.Beijing:Higher Education Press, 2009:380-381.
[7] VITRESCHAK A G, RODIONOV D A, MIRONOV A A, et al.Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation[J].Nucleic Acids Research,2002, 30(14):3 141-3 151.
[8] 蔺兴法. 枯草芽孢杆菌X42产核黄素发酵过程优化[D].天津:天津大学, 2010.
LIN X F.Study on optimization of riboflavin fermentation by B.subtilis X42[D].Tianjin:Tianjin University, 2010.
[9] KERRY J A, KWOK F.Purification and characterization of pyridoxal kinase from human erythrocytes[J].Preparative Biochemistry, 1986, 16(3):199-216.
[10] 徐达, 梅漫莉, 徐庆阳, 等.生物素对L-缬氨酸发酵的影响[J].食品科学, 2019, 40(22):213-218.
XU D, MEI M L, XU Q Y, et al.Effect of biotin addition on microbial production of L-valine[J].Food Science, 2019, 40(22):213-218.
[11] 张玉富, 熊海波, 徐庆阳, 等.生物素及膜偶联间歇透析发酵对黄色短杆菌生产L-亮氨酸的影响[J].食品与发酵工业, 2019, 45(9):15-20.
ZHANG Y F, XIONG H B, XU Q Y, et al.Effects of biotin and membrane coupled intermittent dialysis fermentation on the production of L-leucine by Brevibacterium flavum[J].Food and Fermentation Industries, 2019, 45(9):15-20.
[12] BÁEZ-VIVEROS J L,OSUNA J,HERNÁNDEZ-CHÁVEZ G, et al.Metabolic engineering and protein directed evolution increase the yield of L-Phenylalanine synthesized from glucose in Escherichia coli[J].Biotechnology & Bioengineering, 2010, 87(4):516-524.
[13] 徐达, 梅漫莉, 徐庆阳.氯化胆碱对L-缬氨酸发酵的影响[J].食品与发酵工业, 2019, 45(17):14-19.
XU D, MEI M L, XU Q Y.Effects of choline chloride on L-valine fermentation[J].Food and Fermentation Industries, 2019, 45(17):14-19.
[14] 郝大利. 大肠杆菌色氨酸代谢途径关键酶基因aroG的定点突变与基因trpBA的共表达[D].无锡: 江南大学, 2013.
HAO D L.Site-directed mutagenesis and expression of the key enzyme gene (aroG,trpBA) of tryptophan pathways synthesis in the E.coli[D].WuXi: Jiangnan University, 2013.
[15] NELMS J, EDWARDS R M, WARWICK J, et al.Novel mutations in the PheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase[J].Applied and Environmental Microbiology, 1992, 58(8):2 592-2 598.
[16] 唐红梅. 副干酪乳杆菌芳香族氨基酸转氨酶克隆表达及其酶学性质研究[D].苏州:苏州大学, 2013.
TANG H M.Clonging, expression and properties of aromatic aminotransferase from Lactobacillus paracasei[D].Suzhou:Suzhou University, 2013.
[17] 熊海波, 刘云鹏, 徐庆阳.超声对谷氨酸棒杆菌发酵L-异亮氨酸的影响[J].食品与发酵工业, 2021, 47(4):40-46.
XIONG H B, LIU Y P, XU Q Y.Effect of ultrasound on L-isoleucine fermented by Corynebacterium glutamate[J].Food and Fermentation Industries, 2021, 47(4):40-46.
[18] ANDREWS S C, ROBINSON A K, RODRGUEZ-QUIÍONES F.Bacterial iron homeostasis[J].FEMS Microbiology Reviews, 2003, 27(2-3):215-237.
[19] TOUATI D.Iron and oxidative stress in bacteria[J].Archives of Biochemistry & Biophysics, 2000, 373(1):1-6.
[20] 陈宁. 氨基酸工艺学[M].北京:中国轻工业出版社, 2013:42-46.
CHEN N. Amino Acid Technology[M].Beijing:China Light Industry Publishing House, 2013:42-46.
[21] STEPHENS C M, BAUERLE R.Analysis of the metal requirement of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli[J].Journal of Biological Chemistry, 1991, 266(31):20 810-20 817.
[22] BALACHANDRAN N, HEIMHALT M, LIUNI P, et al.Potent inhibition of 3-deoxy-d-arabinoheptulosonate-7-phosphate(DAHP) synthase by DAHP oxime, a phosphate group mimic[J].Biochemistry, 2016, 55(48):6 617-6 629.
[23] TAKORS R.Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production[J].Biotechnology Progress, 2004, 20(1):57-64.
[24] 潘海亮. 高效利用水稻秸秆产L-丙氨酸大肠杆菌工程菌的构建及其发酵研究[D].武汉:湖北工业大学, 2020.
PAN H L.Effect fermentation of rice straw for L-alanine by metabolically engineered Escherichia coli[D].Wuhan:Hubei University of Technology, 2020.
文章导航

/