该文主要考察了姜黄素超分子包合物(curcumin/β-cyclodextrin polymer inclusion complex, CUR/CDP)保护乙醇诱导LO2肝细胞损伤的分子机制。采用流式细胞仪检测CUR/CDP预处理对乙醇诱导细胞损伤后细胞周期分布的影响;Western blot检测CUR/CDP预处理对乙醇诱导细胞内蛋白表达水平变化的影响;活性氧(reactive oxygen species,ROS)试剂盒检测CUR/CDP预处理对乙醇诱导细胞内ROS水平的影响。结果发现,乙醇能显著提高细胞内G2/M期细胞数目,从空白对照组的(8.83±0.46)%提高到(21.86±0.13)%。而经80 μg/mL CUR/CDP预处理后乙醇诱导的细胞损伤显著降低,发现其细胞内G2/M期细胞数目从乙醇处理组的(21.86±0.13)%降低到(4.76±0.36)%。进一步研究发现,CUR/CDP能够显著下调乙醇处理组中的p21、p-ATM、p-P53、γ-H2AX以及p-p38MAPK的蛋白表达量和上调cyclin B1和p-MDM2的蛋白表达量。此外,CUR/CDP作用于细胞后其细胞内ROS的荧光强度显著减弱,表明CUR/CDP能够抑制乙醇诱导细胞内ROS的产生。综上所述,CUR/CDP通过抑制细胞内ROS的产生下调细胞内与DNA损伤相关蛋白的表达,从而改善乙醇诱导的肝细胞损伤。
To investigate the molecular mechanism of curcumin/β-cyclodextrin polymer inclusion complex (CUR/CDP) protecting injury of LO2 liver cells induced by ethanol, the effects of CUR/CDP pretreatment on ethanol-induced cell cycle distribution were detected by flow cytometry. Western blot was used to detect the effects of CUR/CDP pretreatment on the expression changes of intracellular proteins induced by ethanol. The effects of CUR/CDP pretreatment on the levels of intracellular reactive oxygen species induced by ethanol were detected by ROS assay kit. The results showed that ethanol significantly increased G2/M phase population from (8.83±0.46)% to (21.86±0.13)% in the blank control group. 80 μg/mL CUR/CDP pretreatment resulted in a decrease in G2/M phase population from (21.86±0.13)% to (4.76±0.36)%. Further studies showed that CUR/CDP significantly down-regulated the expression levels of p21, p-ATM, p-P53, γ-H2AX and p-p38MAPK proteins, and up-regulated the expression levels of Cyclin B1 and p-MDM2 proteins in the ethanol treatment group. In addition, the fluorescence intensity of intracellular ROS was significantly reduced after CUR/CDP pretreatment, indicating that CUR/CDP could inhibit the production of intracellular ROS induced by ethanol. In conclusion, CUR/CDP can reduce the expressions of DNA damage-related proteins by inhibiting intracellular ROS production, thus improving ethanol-induced liver cells injury.
[1] 左军, 唐明哲, 韩淑丽, 等.中医药治疗酒精性肝损伤的研究进展[J].中医药信息, 2017, 34(3):124-128.
ZUO J, TANG M Z, HAN S L, et al.Research progress on treatment of alcoholic liver injury with traditional Chinese medicine[J].Information on Traditional Chinese Medicine, 2017, 34(3):124-128.
[2] World Health Organization.Global status report on alcohol and health 2018[EB/OL].[2020-07-10].https://apps.who.int/iris/handle/10665/274603.
[3] TESCHKE R.Alcoholic liver disease:Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects[J].Biomedicines, 2018, 6(4):106.
[4] LEUNG T M, NIETO N.CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease[J].Journal of Hepatology, 2013, 58(2):395-398.
[5] CHEN X, ZOU L Q, NIU J, et al.The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes[J].Molecules, 2015, 20(8):14 293-14 311.
[6] KENSLER T W, WAKABAYASHI N.Nrf2:Friend or foe for chemoprevention?[J].Carcinogenesis, 2009, 31(1):90-99.
[7] CREMERS N A J, LUNDVIG D M S, VAN DALEN S C M, et al.Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells[J].International Journal of Molecular Sciences, 2014, 15(10):17 974-17 999.
[8] 张媛媛, 宋理平, 郭辉, 等.姜黄素对四氯化碳诱导鲤肝脏损伤的修复作用[J].广东海洋大学学报, 2020, 40(5):1-11.
ZHANG Y Y, SONG L P, GUO H, et al.Research of curcumin on recovery effect of liver injury in cyprinus carpio induced by carbon tetrachloride[J].Journal of Guangdong Ocean University, 2020, 40(5):1-11.
[9] CHEN J P, QIN X M, ZHONG S Y, et al.Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities[J].Molecules, 2018, 23(5):1 179.
[10] 范土贵, 陈建平, 高加龙, 等.姜黄素超分子包合物对乙醇诱导LO2细胞损伤的保护作用[J].食品工业科技, 2021,42(18):366-371.
FAN T G, CHEN J P, GAO J L, et al, Protective effect of curcumin/cyclodextrin polymer inclusion complex on LO2 cells damaged by ethanol[J].Science and Technology of Food Industry, 2021,42(18):366-371.
[11] 陈建平, 钟赛意, 秦小明, 等.负载姜黄素β-环糊精功能化纳米银诱导HepG2细胞凋亡机制[J].广东海洋大学学报, 2019, 39(1):78-83.
CHEN J P, ZHONG S Y, QIN X M, et al.Preliminary study on the molecular mechanism of cyclodextrin functional silver nanoparticles-loaded curcumin induced HepG2 cells apoptosis[J].Journal of Guangdong Ocean University, 2019, 39(1):78-83.
[12] 陈文莹, 陈江碧, 周吉发, 等.四种调味蔬菜对红酸汤烹调中全反式番茄红素含量的影响[J].中国调味品,2020, 45(1):67-71.
CHEN W Y, CHEN J B, ZHOU J F, et al.Effect of four seasoning vegetables on the content of all-trans lycopene in cooking process of red sour soup[J].China Condiment, 2020, 45(1):67-71.
[13] MIN A, KIM J E, KIM Y J, et al.Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gast ric cancer cells[J].Cancer Letters, 2018, 430:123-132.
[14] RUBIO C, MARTíNEZ-FERNÁNDEZ M, SEGOVIA C, et al.CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status[J].Clinical Cancer Research, 2019, 25(1):390-402.
[15] ARELLANO M, MORENO S.Regulation of CDK/cyclin complexes during the cell cycle[J].International Journal of Biochemistry & Cell Biology, 1997, 29(4):559-573.
[16] TANE S, IKENISHI A, OKAYAMA H, et al.CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes[J].Biochemical and Biophysical Research Communications, 2014, 443(3):1 105-1 109.
[17] TEWARI D, LLOYD-JONES K, HIDER R C, et al.HPO iron chelator, CP655, causes the G1/S phase cell cycle block via p21 upregulation[J].Immunity Inflammation and Disease, 2020,8(4):568-583.
[18] 陈建平. 右旋龙脑促进姜黄素类化合物抑制HepG2肝癌细胞增殖的分子机制研究[D].广州:华南理工大学, 2015.
CHEN J P.Molecular mechanism underlying natural borneol-potentiated curcuminoids inhibiting HepG2 human hepatocellular carcinoma cells growth[D].Guangzhou:South China University of Technology, 2015.
[19] OHBA S, JOHANNESSEN T C A, CHATLA K, et al.Phosphoglycerate mutase 1 activates DNA damage repair via regulation of WIP1 activity[J].Cell Reports, 2020,31(2):107518.
[20] MATEI I R, GUIDOS C J, DANSKA J S.ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis:The DSB connection[J].Immunological Reviews, 2006, 209(1):142-158.
[21] STEWART Z A, PIETENPOL J A.P53 signaling and cell cycle checkpoints[J].Chemical Research in Toxicology, 2001, 14(3):243-263.
[22] CHAO C C K.Mechanisms of p53 degradation[J].Clinica Chimica Acta, 2015, 438:139-147.
[23] BUBICI C, PAPA S.JNK signalling in cancer:In need of new, smarter therapeutic targets[J].British Journal of Pharmacology, 2014, 171(1):24-37.
[24] TANG J Y, HE A H, JIA G, et al.Protective effect of selenoprotein X against oxidative stress-induced cell apoptosis in human hepatocyte (LO2) cells via the p38 pathway[J].Biological Trace Element Research, 2018, 181(1):44-53.
[25] LI D W, DAI C S,YANG X Y, et al.GADD45a regulates olaquindox-induced DNA damage and s-phase arrest in human hepatoma G2 cells via JNK/p38 pathways[J].Molecules, 2017, 22(1):124.