研究报告

姜黄素超分子包合物改善乙醇诱导LO2肝细胞DNA损伤的作用机制

  • 范土贵 ,
  • 曹笑皇 ,
  • 赵云涛 ,
  • 高加龙 ,
  • 刘颖 ,
  • 刘海 ,
  • 钟赛意 ,
  • 秦小明 ,
  • 陈建平
展开
  • 1(广东海洋大学 食品科技学院, 广东省水产品加工与安全重点实验室, 广东省海洋生物制品工程实验室, 广东省海洋食品工程技术研究中心, 水产品深加工广东普通高等学校重点实验室, 广东省亚热带果蔬加工科技创新中心,广东 湛江,524088)
    2(海洋食品精深加工关键技术省部共建协同创新中心(大连工业大学),辽宁 大连,116034)
    3(玉林师范学院 化学与食品科学学院,广西 玉林,537000)
    4(广东海洋大学 滨海农业学院,广东 湛江,524088)
第一作者:硕士研究生(陈建平副教授为通信作者,E-mail:cjp516555989@126.com)

收稿日期: 2021-06-28

  修回日期: 2021-08-13

  网络出版日期: 2022-05-18

基金资助

广东省自然科学基金面上项目(2020A1515010860;2021A1515012455);广东海洋大学创新强校项目(230419100);广东海洋大学“南海学者计划”项目(002029002009)

Mechanism of curcumin/cyclodextrin polymer inclusion complex improving DNA injury of LO2 liver cells induced by ethanol

  • FAN Tugui ,
  • CAO Xiaohuang ,
  • ZHAO Yuntao ,
  • GAO Jialong ,
  • LIU Ying ,
  • LIU Hai ,
  • ZHONG Saiyi ,
  • QIN Xiaoming ,
  • CHEN Jianping
Expand
  • 1(College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China)
    2(Collaborative Innovation Center of Seafood Deep Processing(Dalian Polytechnic University) Dalian 116034, China)
    3(College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China)
    4(College of Costal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China)

Received date: 2021-06-28

  Revised date: 2021-08-13

  Online published: 2022-05-18

摘要

该文主要考察了姜黄素超分子包合物(curcumin/β-cyclodextrin polymer inclusion complex, CUR/CDP)保护乙醇诱导LO2肝细胞损伤的分子机制。采用流式细胞仪检测CUR/CDP预处理对乙醇诱导细胞损伤后细胞周期分布的影响;Western blot检测CUR/CDP预处理对乙醇诱导细胞内蛋白表达水平变化的影响;活性氧(reactive oxygen species,ROS)试剂盒检测CUR/CDP预处理对乙醇诱导细胞内ROS水平的影响。结果发现,乙醇能显著提高细胞内G2/M期细胞数目,从空白对照组的(8.83±0.46)%提高到(21.86±0.13)%。而经80 μg/mL CUR/CDP预处理后乙醇诱导的细胞损伤显著降低,发现其细胞内G2/M期细胞数目从乙醇处理组的(21.86±0.13)%降低到(4.76±0.36)%。进一步研究发现,CUR/CDP能够显著下调乙醇处理组中的p21、p-ATM、p-P53、γ-H2AX以及p-p38MAPK的蛋白表达量和上调cyclin B1和p-MDM2的蛋白表达量。此外,CUR/CDP作用于细胞后其细胞内ROS的荧光强度显著减弱,表明CUR/CDP能够抑制乙醇诱导细胞内ROS的产生。综上所述,CUR/CDP通过抑制细胞内ROS的产生下调细胞内与DNA损伤相关蛋白的表达,从而改善乙醇诱导的肝细胞损伤。

本文引用格式

范土贵 , 曹笑皇 , 赵云涛 , 高加龙 , 刘颖 , 刘海 , 钟赛意 , 秦小明 , 陈建平 . 姜黄素超分子包合物改善乙醇诱导LO2肝细胞DNA损伤的作用机制[J]. 食品与发酵工业, 2022 , 48(8) : 182 -189 . DOI: 10.13995/j.cnki.11-1802/ts.028444

Abstract

To investigate the molecular mechanism of curcumin/β-cyclodextrin polymer inclusion complex (CUR/CDP) protecting injury of LO2 liver cells induced by ethanol, the effects of CUR/CDP pretreatment on ethanol-induced cell cycle distribution were detected by flow cytometry. Western blot was used to detect the effects of CUR/CDP pretreatment on the expression changes of intracellular proteins induced by ethanol. The effects of CUR/CDP pretreatment on the levels of intracellular reactive oxygen species induced by ethanol were detected by ROS assay kit. The results showed that ethanol significantly increased G2/M phase population from (8.83±0.46)% to (21.86±0.13)% in the blank control group. 80 μg/mL CUR/CDP pretreatment resulted in a decrease in G2/M phase population from (21.86±0.13)% to (4.76±0.36)%. Further studies showed that CUR/CDP significantly down-regulated the expression levels of p21, p-ATM, p-P53, γ-H2AX and p-p38MAPK proteins, and up-regulated the expression levels of Cyclin B1 and p-MDM2 proteins in the ethanol treatment group. In addition, the fluorescence intensity of intracellular ROS was significantly reduced after CUR/CDP pretreatment, indicating that CUR/CDP could inhibit the production of intracellular ROS induced by ethanol. In conclusion, CUR/CDP can reduce the expressions of DNA damage-related proteins by inhibiting intracellular ROS production, thus improving ethanol-induced liver cells injury.

参考文献

[1] 左军, 唐明哲, 韩淑丽, 等.中医药治疗酒精性肝损伤的研究进展[J].中医药信息, 2017, 34(3):124-128.
ZUO J, TANG M Z, HAN S L, et al.Research progress on treatment of alcoholic liver injury with traditional Chinese medicine[J].Information on Traditional Chinese Medicine, 2017, 34(3):124-128.
[2] World Health Organization.Global status report on alcohol and health 2018[EB/OL].[2020-07-10].https://apps.who.int/iris/handle/10665/274603.
[3] TESCHKE R.Alcoholic liver disease:Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects[J].Biomedicines, 2018, 6(4):106.
[4] LEUNG T M, NIETO N.CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease[J].Journal of Hepatology, 2013, 58(2):395-398.
[5] CHEN X, ZOU L Q, NIU J, et al.The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes[J].Molecules, 2015, 20(8):14 293-14 311.
[6] KENSLER T W, WAKABAYASHI N.Nrf2:Friend or foe for chemoprevention?[J].Carcinogenesis, 2009, 31(1):90-99.
[7] CREMERS N A J, LUNDVIG D M S, VAN DALEN S C M, et al.Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells[J].International Journal of Molecular Sciences, 2014, 15(10):17 974-17 999.
[8] 张媛媛, 宋理平, 郭辉, 等.姜黄素对四氯化碳诱导鲤肝脏损伤的修复作用[J].广东海洋大学学报, 2020, 40(5):1-11.
ZHANG Y Y, SONG L P, GUO H, et al.Research of curcumin on recovery effect of liver injury in cyprinus carpio induced by carbon tetrachloride[J].Journal of Guangdong Ocean University, 2020, 40(5):1-11.
[9] CHEN J P, QIN X M, ZHONG S Y, et al.Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities[J].Molecules, 2018, 23(5):1 179.
[10] 范土贵, 陈建平, 高加龙, 等.姜黄素超分子包合物对乙醇诱导LO2细胞损伤的保护作用[J].食品工业科技, 2021,42(18):366-371.
FAN T G, CHEN J P, GAO J L, et al, Protective effect of curcumin/cyclodextrin polymer inclusion complex on LO2 cells damaged by ethanol[J].Science and Technology of Food Industry, 2021,42(18):366-371.
[11] 陈建平, 钟赛意, 秦小明, 等.负载姜黄素β-环糊精功能化纳米银诱导HepG2细胞凋亡机制[J].广东海洋大学学报, 2019, 39(1):78-83.
CHEN J P, ZHONG S Y, QIN X M, et al.Preliminary study on the molecular mechanism of cyclodextrin functional silver nanoparticles-loaded curcumin induced HepG2 cells apoptosis[J].Journal of Guangdong Ocean University, 2019, 39(1):78-83.
[12] 陈文莹, 陈江碧, 周吉发, 等.四种调味蔬菜对红酸汤烹调中全反式番茄红素含量的影响[J].中国调味品,2020, 45(1):67-71.
CHEN W Y, CHEN J B, ZHOU J F, et al.Effect of four seasoning vegetables on the content of all-trans lycopene in cooking process of red sour soup[J].China Condiment, 2020, 45(1):67-71.
[13] MIN A, KIM J E, KIM Y J, et al.Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gast ric cancer cells[J].Cancer Letters, 2018, 430:123-132.
[14] RUBIO C, MARTíNEZ-FERNÁNDEZ M, SEGOVIA C, et al.CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status[J].Clinical Cancer Research, 2019, 25(1):390-402.
[15] ARELLANO M, MORENO S.Regulation of CDK/cyclin complexes during the cell cycle[J].International Journal of Biochemistry & Cell Biology, 1997, 29(4):559-573.
[16] TANE S, IKENISHI A, OKAYAMA H, et al.CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes[J].Biochemical and Biophysical Research Communications, 2014, 443(3):1 105-1 109.
[17] TEWARI D, LLOYD-JONES K, HIDER R C, et al.HPO iron chelator, CP655, causes the G1/S phase cell cycle block via p21 upregulation[J].Immunity Inflammation and Disease, 2020,8(4):568-583.
[18] 陈建平. 右旋龙脑促进姜黄素类化合物抑制HepG2肝癌细胞增殖的分子机制研究[D].广州:华南理工大学, 2015.
CHEN J P.Molecular mechanism underlying natural borneol-potentiated curcuminoids inhibiting HepG2 human hepatocellular carcinoma cells growth[D].Guangzhou:South China University of Technology, 2015.
[19] OHBA S, JOHANNESSEN T C A, CHATLA K, et al.Phosphoglycerate mutase 1 activates DNA damage repair via regulation of WIP1 activity[J].Cell Reports, 2020,31(2):107518.
[20] MATEI I R, GUIDOS C J, DANSKA J S.ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis:The DSB connection[J].Immunological Reviews, 2006, 209(1):142-158.
[21] STEWART Z A, PIETENPOL J A.P53 signaling and cell cycle checkpoints[J].Chemical Research in Toxicology, 2001, 14(3):243-263.
[22] CHAO C C K.Mechanisms of p53 degradation[J].Clinica Chimica Acta, 2015, 438:139-147.
[23] BUBICI C, PAPA S.JNK signalling in cancer:In need of new, smarter therapeutic targets[J].British Journal of Pharmacology, 2014, 171(1):24-37.
[24] TANG J Y, HE A H, JIA G, et al.Protective effect of selenoprotein X against oxidative stress-induced cell apoptosis in human hepatocyte (LO2) cells via the p38 pathway[J].Biological Trace Element Research, 2018, 181(1):44-53.
[25] LI D W, DAI C S,YANG X Y, et al.GADD45a regulates olaquindox-induced DNA damage and s-phase arrest in human hepatoma G2 cells via JNK/p38 pathways[J].Molecules, 2017, 22(1):124.
文章导航

/