4-羟基异亮氨酸(4-hydroxyisoleucine,4-HIL)在治疗Ⅱ型糖尿病方面极具潜力。异亮氨酸双加氧酶(isoleucine dioxygenase,IDO)能够将L-异亮氨酸(L-isoleucine,Ile)转变成4-HIL。为提高重组谷氨酸棒杆菌的4-HIL产量同时降低副产物L-赖氨酸(L-lysine,Lys)的合成,首先将Lys-OFF核糖体开关整合到Lys合成途径的关键基因dapA序列上游,得到D-RS菌株。该菌株能够根据胞内外Lys的浓度,动态弱化Lys合成,使Lys的含量降低了46.7%。其次,在该菌株中再利用Ile激活型传感器Lrp-PbrnFEN去控制密码子优化后的ido基因的表达,使4-HIL的产量提高至116.3 mmol/L。最后,为了进一步提高4-HIL产量,利用强启动子PbrnFE7动态控制odhI和vgb的表达,增强α-酮戊二酸和O2的供应。最终得到了1株摇瓶发酵4-HIL产量高达166.0 mmol/L,Lys含量降至6.5 mmol/L 的重组菌株D-RS-0I7O7V。研究所采用的动态调控策略为4-HIL的高效合成提供了一种新思路。
4-Hydroxyisoleucine (4-HIL) has great potential in the treatment of type II diabetes. Isoleucine dioxygenase (IDO) can convert L-isoleucine (Ile) into 4-HIL. To improve the product of 4-HIL and reduce the by-product L-lysine (Lys) synthesis in recombinant Corynebacterium glutamicum, the Lys-OFF riboswitch was integrated into the upstream of dapA gene, the key gene of Lys synthesis pathway, and the D-RS strain was obtained. The strain could dynamically minimize the synthesis to Lys by the concentration of intracellular and extracellular Lys, and decreased the content of Lys by 46.7%. Secondly, the Ile-activated biosensor Lrp-PbrnFEN was used to control the expression of codon-optimized ido in D-RS strain, and the titer of 4-HIL was increased to 116.3 mmol/L. In order to further improve the titer of 4-HIL, the strong promoter PbrnFE7 was used to dynamically control the expression of odhI and vgb to enhance the supply of α-ketoglutarate and oxygen. Finally, a recombinant strain D-RS-0I7O7V with the 4-HIL titer up to 166.0 mmol/L and Lys content down to 6.5 mmol/L after fermentation in shake flasks was obtained. The dynamic regulation strategy provides a new idea for the efficient biosynthesis of 4-HIL.
[1] FOWDEN L, PRATT H M, SMITH A.4-Hydroxyisoleucine from seed of Trigonella foenum-graecum[J].Phytochemistry, 1973, 12(7):1 707-1 711.
[2] 李洋, 张稳杰, 韩雨辰, 等.生物法合成4-羟基异亮氨酸的代谢工程研究进展[J].食品与发酵工业, 2022, 48(5):281-288.
LI Y, ZHANG W J, HAN Y C, et al.Advances on metabolic engineering for biosynthesis of 4-hydroxyisoleucine[J].Food and Fermentation Industries, 2022, 48(5):281-288.
[3] GAO F, DU W, ZAFAR M I, et al.4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression[J].Drug Design Development and Therapy, 2015(9):5 727-5 736.
[4] YANG J L, RAN Y H, YANG Y H, et al.4-Hydroxyisoleucine alleviates macrophage-related chronic inflammation and metabolic syndrome in mice fed a high-fat diet[J].Frontiers in Pharmacology, 2021, 11:606514.
[5] WANG Q, OUAZZANI J, SASAKI N A, et al.A practical synthesis of (2S, 3R, 4S)-4-hydroxyisoleucine, A potent insulinotropic α-amino acid from fenugreek[J].European Journal of Organic Chemistry, 2002, 2002(5):834-839.
[6] SMIRNOV S V, KODERA T, SAMSONOVA N N, et al.Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine[J].Applied Microbiology and Biotechnology, 2010, 88(3):719-726.
[7] KODERA T, SMIRNOV S V, SAMSONOVA N N, et al.A novel l-isoleucine hydroxylating enzyme, l-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-4-hydroxyisoleucine[J].Biochemical and Biophysical Research Communications, 2009, 390(3):506-510.
[8] SHI F, NIU T F, FANG H M.4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp.lactofermentum under optimal corn steep liquor limitation[J].Applied Microbiology and Biotechnology, 2015, 99(9):3 851-3 863.
[9] SHI F, FANG H M, NIU T F, et al.Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp.lactofermentum[J].Enzyme and Microbial Technology, 2016, 87-88:79-85.
[10] 卢正珂, 史锋.过表达mqo对重组谷氨酸棒杆菌L-异亮氨酸和4-羟基异亮氨酸合成的影响[J].食品与发酵工业, 2017, 43(10):30-35.
LU Z K, SHI F.Effects of mqo overexpression on the synthesis of L-isoleucine and 4-hydroxyisoleucine in recombinant Corynebacterium glutamicum[J].Food and Fermentation Industries, 2017, 43(10):30-35.
[11] SHI F, ZHANG M L, LI Y F, et al.Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum[J].Enzyme and Microbial Technology, 2018, 115:1-8.
[12] SHI F, ZHANG S P, LI Y F, et al.Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp.lactofermentum[J].Applied Microbiology and Biotechnology, 2019, 103(10):4 113-4 124.
[13] 谭书煜. 通过异亮氨酸生物传感器动态调控谷氨酸棒状杆菌生产4-羟基异亮氨酸[D].无锡:江南大学, 2020.
TAN S Y.Dynamic regulation of Corynebacterium glutamicum for producing 4-hydroxyisoleucine by isoleucine biosensor[D].Wuxi:Jiangnan University, 2020.
[14] SONNTAG K, EGGELING L, DE GRAAF A A, et al.Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum[J].European Journal of Biochemistry, 1993, 213(3):1 325-1 331.
[15] VOGT M, KRUMBACH K, BANG W G, et al.The contest for precursors:Channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation[J].Applied Microbiology and Biotechnology, 2015, 99(2):791-800.
[16] YU X P, SHI F, LIU H Y, et al.Programming adaptive laboratory evolution of 4-hydroxyisoleucine production driven by a lysine biosensor in Corynebacterium glutamicum [J].AMB Express, 2021, 11(1):66.
[17] ZHOU L B, ZENG A P.Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum[J].ACS Synthetic Biology, 2015, 4(6):729-734.
[18] HU J Y, LI Y Y, ZHANG H L, et al.Construction of a novel expression system for use in Corynebacterium glutamicum[J].Plasmid, 2014, 75:18-26.
[19] SCHÄFER A, TAUCH A, JÄGER W, et al.Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19:Selection of defined deletions in the chromosome of Corynebacterium glutamicum[J].Gene, 1994, 145(1):69-73.
[20] SHI F, FAN Z Y, ZHANG S P, et al.Optimization of ribosomal binding site sequences for gene expression and 4-hydroxyisoleucine biosynthesis in recombinant Corynebacterium glutamicum[J].Enzyme and Microbial Technology, 2020, 140:109622.
[21] 孟静, 芦楠, 朱福周, 等.两阶段溶氧控制及FeSO4添加对谷氨酸棒杆菌合成4-羟基异亮氨酸的影响[J].食品与发酵工业, 2019, 45(12):1-6.
MENG J, LU N, ZHU F Z, et al.Effects of two-stage DO control and FeSO4 addition on 4-hydroxyisoleucine production by Corynebacterium glutamicum[J].Food and Fermentation Industries, 2019, 45(12):1-6.