为建立能够同时检测食品中单核细胞增生李斯特氏菌、沙门氏菌属、克罗诺杆菌属、志贺氏菌属、金黄色葡萄球菌、副溶血性弧菌、大肠埃希氏菌O157:H7、铜绿假单胞菌、粪链球菌、产气荚膜梭菌等10种食源性致病菌的多重PCR方法,通过特异性引物的设计、引物特异性验证、引物灵敏度验证和多重PCR检测体系主要反应条件优化,建立多重PCR检测体系,并对其特异性、灵敏度以及人工感染样品应用进行评价。结果表明,建立的多重PCR检测体系可以扩增出10种食源性致病菌的特异目标条带,无非特异扩增。测序结果与目的基因序列进行比对,其序列同源性高达98%,体系灵敏度可达10-1 ng/μL。人工污染样品应用结果表明,采用多重PCR方法简单快速,仅需简单增菌,检出限可达10 CFU/mL,整个检测时间在48 h以内。建立的多重PCR检测体系特异性强、灵敏度较高,与检验机构实际检测工作联系紧密,具有推广应用价值。
To establish a multiplex PCR method for the simultaneous detection of 10 kinds of foodborne pathogens in food, including Listeria monocytogenes, Salmonella spp., Cronobacteria spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Escherichia coli O157: H7, Pseudomonas aeruginosa, Streptococcus faecalis and Clostridium perfringens, the multiplex PCR detection system was established by specific primer design, primer specificity verification, primer sensitivity verification and optimization of the main reaction conditions. Furthermore, the specificity, sensitivity and application of artificially infected samples of the multiplex PCR system were evaluated. The results showed that the specific target bands of 10 foodborne pathogens could be amplified by the multiplex PCR system without nonspecific amplification. The sequencing results showed 98% homology with the target gene sequence, and the sensitivity of the system was up to 10-1 ng/μL. The application results of artificially contaminated samples showed that the multiplex PCR method was simple and rapid, requiring only simple multiplication, with a detection limit of up to 10 CFU/mL, and the detection time was less than 48 h. The multiplex PCR detection system have strong specificity and high sensitivity, which is closely related to actual detection work of inspection institutions, and have great promotion and application value.
[1] 赵彤. 食源性致病菌检测现状与食品微生物危险性评估[J].中国卫生标准管理, 2019, 10(4):7-9.
ZHAO T.Detection status of foodborne pathogenic bacteria and food microbial risk assessment[J].China Health Standard Management, 2019, 10(4):7-9.
[2] 张明娟, 王娟, 袁磊, 等.多重聚合酶链式反应技术在食源性致病菌检测上的应用研究进展[J].食品与发酵工业, 2021, 47(2):305-310.
ZHANG M J, WANG J, YUAN L, et al.Application of multiplex polymerase chain reaction in detection of foodborne pathogens[J].Food and Fermentation Industries, 2021, 47(2):305-310.
[3] 樊兰艳, 甘永琦, 朱斌.滚环等温扩增技术在食源性致病菌检测中的应用[J].食品安全质量检测学报, 2022, 13(2):426-434.
FAN L Y, GAN Y Q, ZHU B.Application of rolling circle amplification technology in the detection of food-borne pathogenic microorganism[J].Journal of Food Safety & Quality, 2022, 13(2):426-434.
[4] 范维, 高晓月, 李贺楠, 等.3种致病菌多重real-time PCR检测方法的建立及其在散装即食肉制品中的应用[J].食品科学, 2022, 43(2):332-338.
FAN W, GAO X Y, LI H N, et al.Establishment and application of multiple real-time PCR method for detection of three kinds of pathogenic bacteria in bulk ready-to-eat meat products[J].Food Science, 2022, 43(2):332-338.
[5] 胡金强, 丁慧敏, 詹丽娟, 等.食源性致病菌多重PCR检测技术建立及其应用[J].轻工学报, 2022, 37(1):12-19.
HU J Q, DING H M, ZHAN L J, et al.Development and application of multiplex PCR detection techniques for foodborne pathogenic bacteria[J].Journal of Light Industry, 2022, 37(1):12-19.
[6] ZHANG Y, HU X Z, WANG Q J.Sensitive and specific detection of E.coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium in milk by microchip electrophoresis combined with multiplex PCR amplification[J].Microchemical Journal, 2020, 157:104876.
[7] LÓPEZ-FABAL M F, GÓMEZ-GARCÉS J L, LÓPEZ LOMBA M, et al.Evaluation of a PCR-multiplex technique for the rapid diagnosis of bacteriemia[J].Revista Espanola De Quimioterapia:Publicacion Oficial De La Sociedad Espanola De Quimioterapia, 2018, 31(3):263-267.
[8] 王亚宾, 陈丽颖, 胡慧, 等.猪源粪肠球菌和屎肠球菌多重PCR快速鉴定方法的建立[J].中国兽医学报, 2011, 31(8):1 123-1 127.
WANG Y B, CHEN L Y, HU H, et al.Development of a multiplex PCR assay for detection of swine-originated E.faecalis and E.faecium isolates[J].Chinese Journal of Veterinary Science, 2011, 31(8):1 123-1 127.
[9] 雷宇. 产气荚膜梭菌的分离鉴定及PCR检测方法的建立[D].呼和浩特:内蒙古农业大学, 2017.
LEI Y.Isolation and identification of Clostridium perfringens and establishment of PCR detection method[D].Hohhot:Inner Mongolia Agricultural University, 2017.
[10] YANG Q, GUO W, LIU Y, et al.Novel single primer isothermal amplification method for the visual detection of Vibrio parahaemolyticus[J].Food Analytical Methods, 2021, 14(10):1 995-2 002.
[11] YANG X J, ZHANG J M, YU S B, et al.Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in retail ready-to-eat foods in China[J].Frontiers in Microbiology, 2016, 7:816.
[12] SOSPEDRA I, SOLER C, MAÑES J, et al.Rapid whole protein quantitation of staphylococcal enterotoxins A and B by liquid chromatography/mass spectrometry[J].Journal of Chromatography.A, 2012, 1238:54-59.
[13] 唐廷廷, 王利娜, 林华, 等.生鲜畜禽肉中金黄色葡萄球菌风险评估研究进展[J].肉类研究, 2017, 31(7):67-72.
TANG T T, WANG L N, LIN H, et al.Advances in risk assessment of Staphylococcus aureus in fresh meat in China[J].Meat Research, 2017, 31(7):67-72.
[14] 林晓丽, 赖卫华, 张莉莉.志贺氏菌检测方法的最新研究进展[J].食品科学, 2009, 30(15):271-275.
LIN X L, LAI W H, ZHANG L L.Recent advances in detection of Shigella species in food[J].Food Science, 2009, 30(15):271-275.
[15] IVERSEN C, MULLANE N, MCCARDELL B, et al.Cronobacter gen.nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen.nov., comb.nov., Cronobacter malonaticus sp.nov., Cronobacter turicensis sp.nov., Cronobacter muytjensii sp.nov., Cronobacter dublinensis sp.nov., Cronobacter genomo species 1, and of three sub species, Cronobacter dublinensis subsp.dublinensis subsp.nov., Cronobacter dublinensis subsp.lausannensis subsp.nov.and Cronobacter dublinensis subsp.lactaridi subsp.nov[J].International Journal of Systematic and Evolutionary Microbiology, 2008, 58(6):1 442-1 447.
[16] 董晓晖, 李程思, 吴清平, 等.食品污染克罗诺杆菌(阪崎肠杆菌)的分离及鉴定[J].微生物学报, 2013, 53(5):429-436.
DONG X H, LI C S, WU Q P, et al.Isolation and identification of Cronobacter(Enterobacter sakazakii) strains from food[J].Acta Microbiologica Sinica, 2013, 53(5):429-436.
[17] JONGENBURGER I, REIJ M W, BOER E P J, et al.Actual distribution of Cronobacter spp.in industrial batches of powdered infant formula and consequences for performance of sampling strategies[J].International Journal of Food Microbiology, 2011, 151(1):62-69.
[18] EMAMI C N, MITTAL R, WANG L, et al.Role of neutrophils and macrophages in the pathogenesis of necrotizing enterocolitis caused by Cronobacter sakazakii[J].Journal of Surgical Research, 2012, 172(1):18-28.
[19] 曹科峰. 环介导等温扩增技术检测铜绿假单胞菌方法的建立及其应用[D].合肥:安徽医科大学, 2017.
CAO K F.Rapid detections of Pseudomoas aeruginosa by loop-mediated isothermal amplification[D].Hefei:Anhui Medical University, 2017.
[20] 胡建华, 李洁莉, 马兆飞, 等.牛奶样品中志贺氏菌的快速PCR检测技术研究[J].食品科学, 2007, 28(8):433-437.
HU J H, LI J L, MA Z F, et al.Detection of Shigella in milk by polymerase chain reaction (PCR) and real-time PCR[J].Food Science, 2007, 28(8):433-437.
[21] 陈伟. 六种食源性致病微生物PCR检测及固相化试剂盒的研究[D].重庆:重庆大学, 2008.
CHEN W.Study on the detection of six food-borne bacterial pathogens by PCR and multiplex PCR detection kit[D].Chongqing:Chongqing University, 2008.