综述与专题评论

CRISPR-Cas系统在细菌基因组编辑和代谢调控中的研究进展

  • 肖雅丽 ,
  • 张建华 ,
  • 钟耀广
展开
  • 1(上海海洋大学 食品学院,上海,201306)
    2(上海交通大学 农业与生物学院,上海,200240)
硕士研究生(张建华副研究员和钟耀广教授为共同通信作者,E-mail:zhangjh@sjtu.edu.cn;ygzhong@shou.edu.cn)

收稿日期: 2021-11-29

  修回日期: 2021-12-27

  网络出版日期: 2022-12-02

Advances on CRISPR-Cas system in bacteria genetic modification and metabolic regulation

  • XIAO Yali ,
  • ZHANG Jianhua ,
  • ZHONG Yaoguang
Expand
  • 1(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
    2(School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2021-11-29

  Revised date: 2021-12-27

  Online published: 2022-12-02

摘要

CRISPR-Cas系统已迅速发展成为高效、精确、简便的多功能基因组编辑及代谢调控工具,并被成功应用于多种细菌。继最具代表性的II型CRISPR-cas9系统后,更简单高效的V型CRISPR-Cpf1系统被开发出来。对这两者不起作用的宿主菌,可考虑采用CRISPR-cas9n或内源I型CRISPR-Cas系统。此外,CRISPR-dcas9、CRISPR-ddCpf1及内源I型CRISPR-Cas系统可用于基因代谢调控。该文从CRISPR-Cas系统的结构、分类、作用机理、各类CRISPR-Cas系统介导的细菌基因组编辑和基因表达调控等方面进行综述,并对CRISPR技术的发展进行了展望。

本文引用格式

肖雅丽 , 张建华 , 钟耀广 . CRISPR-Cas系统在细菌基因组编辑和代谢调控中的研究进展[J]. 食品与发酵工业, 2022 , 48(21) : 318 -324 . DOI: 10.13995/j.cnki.11-1802/ts.030263

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) systems have been developed as efficient, precise, and simple multifunctional genome engineering tools and metabolic regulation tools for bacteria. The most representative is the type II CRISPR-cas9 system, and the type V CRISPR-Cpf1 system was developed later, which is simpler and more efficient. CRISPR-cas9n or the endogenous type I CRISPR-Cas system can be considered, if CRISPR-cas9 and CRISPR-Cpf1 do not work. In addition, CRISPR-dcas9, CRISPR-dCpf1 ,and the endogenous type I CRISPR-Cas systems can be used for gene metabolism regulation. This review mainly focuses on the structure, classification, mechanism of action of CRISPR-Cas systems, their application in bacterial genome editing and gene expression regulation, as well as their future development directions.

参考文献

[1] HILLE F, RICHTER H, WONG S P, et al.The biology of CRISPR-Cas:Backward and forward[J].Cell, 2018, 172(6):1 239-1 259.
[2] JINEK M, CHYLINSKI K, FONFARA I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science, 2012, 337(6 096):816-821.
[3] LIU Z Q, DONG H N, CUI Y L, et al.Application of different types of CRISPR-Cas-based systems in bacteria[J].Microbial Cell Factories, 2020, 19(1):172.
[4] SOREK R, KUNIN V, HUGENHOLTZ P.CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea[J].Nature Reviews Microbiology, 2008, 6(3):181-186.
[5] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al.An updated evolutionary classification of CRISPR-Cas systems[J].Nature Reviews Microbiology, 2015, 13(11):722-736.
[6] HAFT D H, SELENGUT J, MONGODIN E F, et al.A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes[J].PLoS Computational Biology, 2005, 1(6):e60.
[7] JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Molecular Microbiology, 2002, 43(6):1 565-1 575.
[8] NUÑEZ J K, KRANZUSCH P J, NOESKE J, et al.Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity[J].Nature Structural & Molecular Biology, 2014, 21(6):528-534.
[9] 王想想, 杨荟.CRISPR-Cas9系统的基因编辑工具的应用和改进[J].生命的化学, 2019, 39(3):430-437.
WANG X X, YANG H.Applications and development of CRISPR-Cas9-based gene editing tools[J].Chemistry of Life, 2019, 39(3):430-437.
[10] MAKAROVA K S, WOLF Y I, IRANZO J, et al.Evolutionary classification of CRISPR-Cas systems:A burst of class 2 and derived variants[J].Nature Reviews Microbiology, 2020, 18(2):67-83.
[11] MCGINN J, MARRAFFINI L A.Molecular mechanisms of CRISPR-Cas spacer acquisition[J].Nature Reviews Microbiology, 2019, 17(1):7-12.
[12] KOONIN E V, MAKAROVA K S.Origins and evolution of CRISPR-Cas systems[J].Philosophical Transactions of the Royal Society of London.Series B, Biological Sciences, 2019, 374(1 772):20180087.
[13] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J].Nature, 2011, 471(7 340):602-607.
[14] GARNEAU J E, DUPUIS M É, VILLION M, et al.The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J].Nature, 2010, 468(7 320):67-71.
[15] HALE C R, MAJUMDAR S, ELMORE J, et al.Essential features and rational design of CRISPR RNAs that function with the cas RAMP module complex to cleave RNAs[J].Molecular Cell, 2012, 45(3):292-302.
[16] 邓名, 丁俊美.CRISPR/Cas9基因编辑技术在微生物细胞中的应用研究进展[J].应用与环境生物学报, 2022, 28(3):787-795.
DENG M, DING J M.Application progress of genome editing technology CRISPR/Cas9 in microbial cells[J].Chinese Journal of Applied and Environmental Biology, 2022, 28(3):787-795.
[17] ÖZCAN A, PAUSCH P, LINDEN A, et al.Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum[J].Nature Microbiology, 2019, 4(1):89-96.
[18] CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al.Classification and evolution of type II CRISPR-Cas systems[J].Nucleic Acids Research, 2014, 42(10):6 091-6 105.
[19] SWARTS D C, JINEK M.Mechanistic insights into the cis-and trans-acting DNase activities of Cas12a[J].Molecular Cell, 2019, 73(3):589-601.
[20] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science, 2016, 353(6 299):aaf5573.
[21] HIDALGO-CANTABRANA C, GOH Y J, BARRANGOU R.Characterization and repurposing of type I and type II CRISPR-cas systems in bacteria[J].Journal of Molecular Biology, 2019, 431(1):21-33.
[22] YAO R L, LIU D, JIA X, et al.CRISPR-Cas9/Cas12a biotechnology and application in bacteria[J].Synthetic and Systems Biotechnology, 2018, 3(3):135-149.
[23] GAO P, YANG H, RAJASHANKAR K R, et al.Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition[J].Cell Research, 2016, 26(8):901-913.
[24] HUO Y W, NAM K H, DING F, et al.Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation[J].Nature Structural & Molecular Biology, 2014, 21(9):771-777.
[25] XU T, LI Y C, SHI Z, et al.Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase[J].Applied and Environmental Microbiology, 2015, 81(13):4 423-4 231.
[26] DATSENKO K A, WANNER B L.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J].Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6 640-6 645.
[27] ZHAO D D, YUAN S L, XIONG B, et al.Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9[J].Microbial Cell Factories, 2016, 15(1):205.
[28] RONDA C, PEDERSEN L E, SOMMER M O A, et al.CRMAGE:CRISPR optimized MAGE recombineering[J].Scientific Reports, 2016, 6:19452.
[29] SU B L, SONG D D, ZHU H H.Homology-dependent recombination of large synthetic pathways into E.coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology[J].Microbial Cell Factories, 2020, 19(1):108.
[30] SYNEFIARIDOU D, VEENING J W.Harnessing CRISPR-Cas9 for genome editing in Streptococcus pneumoniae D39V[J].Applied and Environmental Microbiology, 2021, 87(6):e02 762-20.
[31] STANDAGE-BEIER K, ZHANG Q, WANG X.Targeted large-scale deletion of bacterial genomes using CRISPR-nickases[J].ACS Synthetic Biology, 2015, 4(11):1 217-1 225.
[32] GOH Y J, BARRANGOU R.Portable CRISPR-Cas9 N system for flexible genome engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei[J].Applied and Environmental Microbiology, 2021, 87(6):e02669-e02620.
[33] ZHOU Y Y, LIN L, WANG H, et al.Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion[J].Communications Biology, 2020, 3:98.
[34] SONG X, HUANG H, XIONG Z Q, et al.CRISPR-Cas9 D10A nickase-assisted genome editing in Lactobacillus casei[J].Applied and Environmental Microbiology, 2017, 83(22):e01259-e01217.
[35] LI L, WEI K K, ZHENG G S, et al.CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces[J].Applied and Environmental Microbiology, 2018, 84(18):e00827-e00818.
[36] ZHAO N N, LI L, LUO G J, et al.Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum[J].Journal of Industrial Microbiology and Biotechnology, 2020, 47(8):599-608.
[37] WU Y K, LIU Y F, LV X Q, et al.CAMERS-B:CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis[J].Biotechnology and Bioengineering, 2020, 117(6):1 817-1 825.
[38] HAO W L, SUO F Y, LIN Q, et al.Design and construction of portable CRISPR-Cpf1-mediated genome editing in Bacillus subtilis 168 oriented toward multiple utilities[J].Frontiers in Bioengineering and Biotechnology, 2020, 8:524676.
[39] PYNE M E, BRUDER M R, MOO-YOUNG M, et al.Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium[J].Scientific Reports, 2016, 6:25666.
[40] ZHANG J, ZONG W M, HONG W, et al.Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production[J].Metabolic Engineering, 2018, 47:49-59.
[41] ZHOU X Q, WANG X L, LUO H Y, et al.Exploiting heterologous and endogenous CRISPR-Cas systems for genome editing in the probiotic Clostridium butyricum[J].Biotechnology and Bioengineering, 2021, 118(7):2 448-2 459.
[42] BANNO S, NISHIDA K, ARAZOE T, et al.Deaminase-mediated multiplex genome editing in Escherichia coli[J].Nature Microbiology, 2018, 3(4):423-429.
[43] 马锦荣. 新型CRISPR/SpCas9-hRedβ基因编辑系统的构建及验证[D].杨凌:西北农林科技大学, 2021.
MA J R.Construction and verification of a novel CRISPR/SpCas9-hRedβ gene editing system[D].Yangling:Northwest A & F University, 2021.
[44] LIU Y, WAN X Y, WANG B J.Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria[J].Nature Communications, 2019, 10:3693.
[45] TAN S Z, REISCH C R, PRATHER K L J.A robust CRISPR interference gene repression system in Pseudomonas[J].Journal of Bacteriology, 2018, 200(7):e00575-e00517.
[46] LI F F, WANG Y, GONG K, et al.Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli[J].FEMS Microbiology Letters, 2014, 350(2):209-215.
[47] PARK J, SHIN H, LEE S M, et al.RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain[J].Microbial Cell Factories, 2018, 17(1):4.
[48] XIANG L, QI F, JIANG L, et al.CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa[J].Letters in Applied Microbiology, 2020, 71(4):386-393.
[49] WU X, ZHA J, KOFFAS M A G, et al.Reducing Staphylococcus aureus resistance to lysostaphin using CRISPR-dCas9[J].Biotechnology and Bioengineering, 2019, 116(12):3 149-3 159.
[50] SUNG L Y, WU M Y, LIN M W, et al.Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli[J].Biotechnology and Bioengineering, 2019, 116(5):1 066-1 079.
[51] LIANG Y, SHEN K, FAN X, et al.Engineering of Corynebacterium glutamicum for biosynthesis of glyoxylic acid using clustered regularly interspaced short palindromic repeats interference[J].Food Science, 2021, 42(2):170-176.
[52] WU J J, ZHOU P, ZHANG X, et al.Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli[J].Journal of Industrial Microbiology & Biotechnology, 2017, 44(7):1 083-1 095.
[53] WU M Y, SUNG L Y, LI H, et al.Combining CRISPR and CRISPRi systems for metabolic engineering of E.coli and 1,4-BDO biosynthesis[J].ACS Synthetic Biology, 2017, 6(12):2 350-2 361.
[54] PAUL B, MONTOYA G.CRISPR-Cas12a:Functional overview and applications[J].Biomedical Journal, 2020, 43(1):8-17.
[55] ZHANG X C, WANG J M, CHENG Q X, et al.Multiplex gene regulation by CRISPR-ddCpf1[J].Cell Discovery, 2017, 3:17018.
[56] LUO M L, MULLIS A S, LEENAY R T, et al.Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression[J].Nucleic Acids Research, 2014, 43(1):674-681.
[57] CHANG Y Z, SU T Y, QI Q S, et al.Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system[J].Microbial Cell Factories, 2016, 15(1):195.
[58] TARASAVA K, LIU R M, GARST A, et al.Combinatorial pathway engineering using type I-E CRISPR interference[J].Biotechnology and Bioengineering, 2018, 115(7):1 878-1 883.
[59] LIAN J Z, SCHULTZ C, CAO M F, et al.Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping[J].Nature Communications, 2019, 10:5794.
文章导航

/