该文以实验室筛选得到的一株具有D-泛解酸内酯水解酶活力的镰孢霉菌(酶活力为1.42 U/mL)为出发菌株,先后利用常温室压等离子(atmospheric room temperature plasma,ARTP)和紫外-氯化锂(UV-LiCl)技术,对其进行了4轮递进诱变选育,以筛选得到高活性D-泛解酸内酯水解酶菌株。实验得到ARTP诱变的最佳处理时间为80 s,UV-LiCl诱变的最佳处理时间为80 s(6 g/L LiCl)。通过变色圈大小初筛和摇瓶复筛,最终筛选得到一株酶活力达3.46 U/mL的菌株4-80-6,酶活力较出发菌株提高了143.66%,并且通过8次传代培养,该菌株遗传性较为稳定。以20%的底物浓度催化反应时,突变株4-80-6水解率由原始菌11.6%提高到17.1%,光学纯度由93.5%提高到98.3%。对突变株4-80-6菌株进行发酵条件优化,得到最佳产酶条件为:培养温度25 ℃,培养基初始pH 8.5,接种量10.5%,培养时间48 h,该条件下酶活力为4.33 U/mL,比优化前提高了25.14%。研究结果为DL-泛解酸内酯酶法拆分的工业应用提供了一种有效策略。
A Fusarium strain with D-pantothenic acid lactone hydrolase activity was selected as the starting strain. A strain with high activity of D-lactonohydrolase was screened by four rounds of progressive mutagenesis with atmospheric room temperature plasma (ARTP) and UV- LiCl technology. The optimum treatment time of ARTP and UV-LiCl mutation was 80 s and the concentration of LiCl was 0.6%). A strain of 4-80-6 with an enzyme activity of 3.46 U/mL was finally screened through preliminary screening of color changing circle and secondary screening of shaking flask. The enzyme activity was 143.66% higher than that of the original strain. After eight generations, the heritability of the strain was relatively stable. When the substrate concentration was 20%, the hydrolysis rate of mutant strain of 4-80-6 increased from 11.6% to 17.1%, and the optical purity increased from 93.5% to 98.3%. The fermentation conditions of mutant strain of 4-80-6 were optimized. The optimum conditions for enzyme production were as follows: the culture temperature was 25 ℃, the initial pH of culture medium was 8.5, the inoculation amount was 10.5% and the culture time was 48 h. Under these conditions, the enzyme activity was 4.33 U/mL, which was 25.14% higher than that before optimization. The results provide an effective strategy for the industrial application of DL panthenolide enzymatic resolution.
[1] 谢颂洋, 顾正华, 郭自涛, 等.重组表达D-泛解酸内酯水解酶乳酸克鲁维酵母的发酵工艺优化[J].食品与发酵工业, 2021, 47(23):38-45.
XIE S Y, GU Z H, GUO Z T, et al.Optimized fermentation condition for production of D-lactonohydrolase in a Kluyveromyces lactis recombinant[J].Food and Fermentation Industries, 2021, 47(23):38-45.
[2] 袁桂梅,于泉德,刘丽秀,等.泛解酸内酯拆分新工艺研究[J].山东化工,2002,31(4):3-4.
YUAN G M,YU Q D,LIU L X,et al.Research on a new process for the resolution of pantolactone [J].Shandong Chemical Industry, 2002,31(4):3-4.
[3] 王加跑.共轭聚酮还原酶基因挖掘和催化D-(-)-泛酰内酯的不对称合成[D].杭州:杭州师范大学,2019.
WANG J P.Discovery of conjugated polyketone reductases for asymmetrically catalyzing the synthesis of D-(-)-pantolactone[D].Hangzhou:Hangzhou Normal University,2019.
[4] ZHU F Y, ZHONG J, SHEN Q, et al.Development of an Escherichia coli whole cell catalyst harboring conjugated polyketone reductase from Candida glabrata for synthesis of D-(-)-pantolactone[J].Process Biochemistry, 2022, 112:223-233.
[5] 汤一新, 孙志浩, 华蕾, 等.D-泛解酸内酯水解酶产生菌的筛选及产酶条件研究[J].微生物学报, 2002, 42(1):81-87.
TANG Y X, SUN Z H, HUA L, et al.Production of D-pantolactone hydrolase by Fusarium moniliforme SW-902[J].Acta Microbiologica Sinica, 2002, 42(1):81-87.
[6] HUA L, SUN Z H, LENG Y, et al.Continuous biocatalytic resolution of DL-pantolactone by cross-linked cells in a membrane bioreactor[J].Process Biochemistry, 2005, 40(3-4):1 137-1 142.
[7] TANG Y X, SUN Z H, HUA L, et al.Kinetic resolution of DL-pantolactone by immobilized Fusarium moniliforme SW-902[J].Process Biochemistry, 2002, 38(4):545-549.
[8] 马佳鹏. 微生物酶法拆分DL-泛解酸内酯[D].沈阳:沈阳药科大学, 2009.
MA J P.Optical resolution of DL-pantolactone by microbial enzyme[D].Shenyang:Shenyang Pharmaceutical University, 2009.
[9] 郑莉莉. D-泛解酸内酯水解酶产生菌的筛选及条件优化的研究[D].济南:山东轻工业学院, 2009.
ZHENG L L.Screening of D-pantolactone hydrolase producing strains and optimizing of technology conditions[D].Jinan:Shandong Polytechnic University, 2009.
[10] 王开放, 张梁, 辛瑜, 等.D-泛解酸内酯水解酶的固定化及酶学性质[J].生物加工过程, 2019, 17(2):159-165.
WANG K F, ZHANG L, XIN Y, et al.Immobilization and characterization of D-lactonohydrolase[J].Chinese Journal of Bioprocess Engineering, 2019, 17(2):159-165.
[11] EFFENBERGER F, EICHHORN J, ROOS J.Enzyme catalyzed addition of hydrocyanic acid to substituted pivalaldehydes:A novel synthesis of (R)-pantolactone[J].Tetrahedron:Asymmetry, 1995, 6(1):271-282.
[12] PSCHEIDT B, LIU Z B, GAISBERGER R, et al.Efficient biocatalytic synthesis of (R)-pantolactone[J].Advanced Synthesis & Catalysis, 2008, 350(13):1 943-1 948.
[13] PSCHEIDT B, AVI M, GAISBERGER R, et al.Screening hydroxynitrile lyases for (R)-pantolactone synthesis[J].Journal of Molecular Catalysis B:Enzymatic, 2008, 52:183-188.
[14] SAKAMOTO K, YAMADA H, SHIMIZU S.D-pantolactone hydrolase and process for the preparation thereof:US5372940[P].1994-12-13.
[15] SAKAMOTO K, YAMADA H, SHIMIZU S.Process for the preparation of D-pantolactone:US5275949[P].1994-01-04.
[16] 马玉涵. 等离子体诱变灵芝及其药用成分的红外光谱分析[D].合肥:中国科学技术大学, 2018.
MA Y H.Plasma mutagenesis of Ganoderma Lingzhi and screening through infrared spectroscopy for medicinal components[D].Hefei:University of Science and Technology of China, 2018.
[17] 徐志南, 刘刚, 柯世省,等. 循环筛选法在除虫链霉菌诱变育种中的应用[J].中国抗生素杂志. 1999,24(3):1-19; 78.
XU Z N, LIU G, KE S S, et al. Application of cyclic screening in mutagenesis breeding of Streptomyces insecticides[J]. Chinese Journal of Antibiotics. 1999,24(3): 1-19; 78.