研究报告

灰树花多糖的分离纯化、结构表征及精氨酸酶抑制活性

  • 李彦颖 ,
  • 张冰茹 ,
  • 林庚兰 ,
  • 张安强
展开
  • 1(浙江工业大学 食品科学与工程学院,浙江 杭州,310014)
    2(浙江省深蓝渔业资源高效开发利用重点实验室,浙江 杭州,310014)
第一作者:硕士研究生(张安强副教授为通信作者,E-mail:zhanganqiang@zjut.edu.cn)

收稿日期: 2022-01-20

  修回日期: 2022-03-10

  网络出版日期: 2023-01-05

基金资助

浙江省科学自然基金项目(LY17C200017)

Isolation, purification, structural characterization and arginase inhibitory activity of polysaccharides from Grifola frondosa

  • LI Yanying ,
  • ZHANG Bingru ,
  • LIN Genglan ,
  • ZHANG Anqiang
Expand
  • 1(College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China)
    2(Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China)

Received date: 2022-01-20

  Revised date: 2022-03-10

  Online published: 2023-01-05

摘要

采用碱提法,并以DEAE Sepharose Fast Flow离子柱层析和Sephacryl S-500 HR凝胶柱层析从灰树花(Grifola frondose)子实体中分离纯化得到水溶性多糖GFPN-2-A,通过高效尺寸排阻色谱-多角度激光散射-示差联用(high-performance size exclusion chromatography-multi-angle laser scattering-refractive index,HPSEC-MALLS-RI)、HPLC、傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FT-IR)、扫描电子显微镜、原子力显微镜、刚果红实验和比色法等对其进行结构表征及精氨酸酶抑制活性分析。结果表明,GFPN-2-A是分子质量为4.56×106 Da的β构型多糖,主要由葡萄糖以及少量的葡萄糖醛酸、甘露糖、核糖和半乳糖组成,物质的量比为54∶1∶0.51∶0.37∶0.68,其主要为碎屑状和片状,在水溶液中的构象呈现出圆柱和圆锥的块状特征,不含三螺旋结构。GFPN-2-A能够抑制精氨酸酶的活性,IC50为(0.855 ± 0.64)mg/mL。动力学分析表明,GFPN-2-A对精氨酸酶的抑制为竞争性可逆抑制,抑制常数Ki为0.284 mg/mL。该研究首次证明了灰树花多糖对精氨酸酶具有抑制作用,为灰树花多糖药物开发开辟新的药物靶点提供了理论依据。

本文引用格式

李彦颖 , 张冰茹 , 林庚兰 , 张安强 . 灰树花多糖的分离纯化、结构表征及精氨酸酶抑制活性[J]. 食品与发酵工业, 2022 , 48(23) : 179 -186 . DOI: 10.13995/j.cnki.11-1802/ts.030908

Abstract

The water-soluble polysaccharide of GFPN-2-A isolated by alkaline extraction and purified by DEAE Sepharose Fast Flow ion column chromatography and Sephacryl S-500 HR gel column chromatography from the fruiting bodies of Grifola frondosa. Its structural characterization and the arginase inhibitory activity analyzed by high-performance size exclusion chromatography-multi-angle laser light scattering-refractive index (HPSEC-MALLS-RI), HPLC, Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscope, Congo red experiment and colorimetric method. The results showed that GFPN-2-A was a β-configuration polysaccharide with the molecular weight 4.56 × 106 Da, composed of glucose and a small amount of glucuronic acid, mannose, ribose, and galactose in the molar ratio of 54:1:0.51:0.37:0.68, it mainly existed in the form of clasts and sheets, and its conformation in aqueous solution presented the characteristics of cylinder and cone, without triple helix structure. GFPN-2-A could inhibit the activity of arginase, the IC50 was (0.855±0.64) mg/mL. Kinetic analysis showed that the inhibition of arginase by GFPN-2-A was competitive and reversible, and the inhibition constant Ki was 0.284 mg/mL. This study proved for the first time that G. frondosa polysaccharides have an inhibitory effect on arginase and provided a theoretical basis for the development of new drug targets for G. frondosa polysaccharides.

参考文献

[1] 戴玉成, 杨祝良.中国药用真菌名录及部分名称的修订[J].菌物学报, 2008, 27(6):801-824.
DAI Y C, YANG Z L.A revised checklist of medicinal fungi in China[J].Mycosystema, 2008, 27(6):801-824.
[2] 戴玉成, 周丽伟, 杨祝良, 等.中国食用菌名录[J].菌物学报, 2010, 29(1):1-21.
DAI Y C, ZHOU L W, YANG Z L, et al.A revised checklist of edible fungi in China[J].Mycosystema, 2010, 29(1):1-21.
[3] YUAN B, ZHAO C, CHENG C, et al.A peptide-Fe(II) complex from Grifola frondosa protein hydrolysates and its immunomodulatory activity[J].Food Bioscience, 2019, 32:100459.
[4] CHEN Y Q, LIU Y Y, SARKER M M R, et al.Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways[J].Carbohydrate Polymers, 2018, 198:452-461.
[5] 吴力亚, 吴天祥, 汪玲.茯苓提取物参与灰树花液态深层发酵及对其活性物质产量的影响[J].食品与发酵工业, 2021, 47(5):57-62.
WU L Y, WU T X, WANG L.Poria cocos extract affected yield of bioactive constituents in submerged culture of Grifola frondosa[J].Food and Fermentation Industries, 2021, 47(5):57-62.
[6] 雷露, 吴天祥, 王川南.基于UPLC-QTOF-MS代谢组学研究灰树花发酵的代谢差异[J].菌物学报, 2020, 39(10):1 920-1 932.
LEI L, WU T X, WANG C N.Analysis of metabolic differences in fermentation of Grifola frondosa based on UPLC-QTOF-MS metabolomics[J].Mycosystema, 2020, 39(10):1 920-1 932.
[7] NANBA H, HAMAGUCHI A, KURODA H.The chemical structure of an antitumor polysaccharide in fruit bodies of Grifola frondosa (Maitake)[J].Chemical & Pharmaceutical Bulletin, 1987, 35(3):1 162-1 168.
[8] 刘佳, 包海鹰, 图力古尔.灰树花化学成分及药理活性研究进展[J].菌物研究, 2018, 16(3):150-157.
LIU J, BAO H Y, BAU T.Chemical constituents and pharmacological activities of Grifola frondosa[J].Journal of Fungal Research, 2018, 16(3):150-157.
[9] DURANTE W, JOHNSON F K, JOHNSON R A.Arginase:A critical regulator of nitric oxide synthesis and vascular function[J].Clinical and Experimental Pharmacology and Physiology, 2007, 34(9):906-911.
[10] CALDWELL R W, RODRIGUEZ P C, TOQUE H A, et al. Arginase:A multifaceted enzyme important in health and disease[J].Physiological Reviews, 2018, 98(2):641-665.
[11] CALDWELL R B, TOQUE H A, NARAYANAN S P, et al.Arginase:An old enzyme with new tricks[J].Trends in Pharmacological Sciences, 2015, 36(6):395-405.
[12] 李向男, 朱方玉, 何永松, 等.精氨酸酶抑制剂nor-NOHA诱导HepG2肝癌细胞凋亡并抑制其侵袭和迁移[J].细胞与分子免疫学杂志, 2017, 33(4):477-482.
LI X N, ZHU F Y, HE Y S, et al.Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells[J].Chinese Journal of Cellular and Molecular Immunology, 2017, 33(4):477-482.
[13] HU H, MOON J, CHUNG J H, et al.Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity[J].Biochemical and Biophysical Research Communications, 2015, 464(3):840-847.
[14] BUJOR A, MIRON A, LUCA S V, et al.Vasorelaxant effects of Crataegus pentagyna:Links with arginase inhibition and phenolic profile[J].Journal of Ethnopharmacology, 2020, 252:112559.
[15] MAQUIAVELI C C, LUCON-JÚNIOR J F, BROGI S, et al.Verbascoside inhibits promastigote growth and arginase activity of Leishmania amazonensis[J].Journal of Natural Products, 2016, 79(5):1 459-1 463.
[16] YUAN Q X, ZHAO L Y, LI Z H, et al.Physicochemical analysis, structural elucidation and bioactivities of a high-molecular-weight polysaccharide from Phellinus igniarius mycelia[J].International Journal of Biological Macromolecules, 2018, 120:1 855-1 864.
[17] BORDAGE S, PHAM T N, ZEDET A, et al.Investigation of mammal arginase inhibitory properties of natural ubiquitous polyphenols by using an optimized colorimetric microplate assay[J].Planta Medica, 2017, 83(7):647-653.
[18] 张安强, 张劲松, 潘迎捷.食药用菌多糖的提取、分离纯化与结构分析[J].食用菌学报, 2005, 12(2):62-68.
ZHANG A Q, ZHANG J S, PAN Y J.Extraction, isolation, purification and structure analysis of polysaccharide from edible-medicinal fungi[J].Acta Edulis Fungi, 2005, 12(2):62-68.
[19] DENG Y J, HUANG L X, ZHANG C H, et al.Novel polysaccharide from Chaenomeles speciosa seeds:Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation[J].International Journal of Biological Macromolecules, 2020, 153:755-766.
[20] NEP E I, CARNACHAN S M, NGWULUKA N C, et al.Structural characterisation and rheological properties of a polysaccharide from sesame leaves (Sesamum radiatum Schumach.& Thonn.)[J].Carbohydrate Polymers, 2016, 152:541-547.
[21] SAHRAGARD N, JAHANBIN K.Structural elucidation of the main water-soluble polysaccharide from Rubus anatolicus roots[J].Carbohydrate Polymers, 2017, 175:610-617.
[22] FARHADI N.Structural elucidation of a water-soluble polysaccharide isolated from Balangu shirazi (Lallemantia royleana) seeds[J].Food Hydrocolloids, 2017, 72:263-270.
[23] WANG D Q, WANG D G, YAN T X, et al.Nanostructures assembly and the property of polysaccharide extracted from Tremella fuciformis fruiting body[J].International Journal of Biological Macromolecules, 2019, 137:751-760.
[24] 陆娟, 谢东雪, 贺柳洋, 等.洋甘菊多糖的分离纯化、性质结构及抗氧化活性分析[J].食品与发酵工业, 2021, 47(3):72-78.
LU J, XIE D X, HE L Y, et al.Purification, structure analysis and antioxidant activity of polysaccharides from Matricaria chamomilla L[J]. Food and Fermentation Industries, 2021, 47(3):72-78.
[25] WANG J L, BAO A J, MENG X H, et al.An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro[J].Carbohydrate Polymers, 2018, 184:366-375.
[26] 李晶, 姜丽丽, 李沐轩, 等.黄芪多糖对黄嘌呤氧化酶活性的抑制作用[J].食品与生物技术学报, 2021, 40(10):16-20.
LI J, JIANG L L, LI M X, et al.Inhibitory effects of Astragalus polysaccharide on activity of xanthine oxidase[J].Journal of Food Science and Biotechnology, 2021, 40(10):16-20.
[27] MOTOSHIMA R A, DA F ROSA T, DA C MENDES L, et al.Inhibition of Leishmania amazonensis arginase by fucogalactan isolated from Agrocybe aegerita mushroom[J].Carbohydrate Polymers, 2018, 201:532-538.
文章导航

/