[1] KANG Z, DING W W, GONG X, et al.Recent advances in production of 5-aminolevulinic acid using biological strategies[J].World Journal of Microbiology and Biotechnology, 2017, 33(11):200.
[2] 陈久洲, 王钰, 蒲伟, 等.5-氨基乙酰丙酸生物合成技术的发展及展望[J].合成生物学, 2021, 2(6):1 000-1 016.
CHEN J Z, WANG Y, PU W, et al.Advances and perspective on bioproduction of 5-aminolevulinic acid[J].Synthetic Biology Journal, 2021, 2(6):1 000-1 016.
[3] TAN S Y, CAO J, XIA X L, et al.Advances in 5-aminolevulinic acid priming to enhance plant tolerance to abiotic stress[J].International Journal of Molecular Sciences, 2022, 23(2):702.
[4] HENDAWY A O, KHATTAB M S, SUGIMURA S, et al.Effects of 5-aminolevulinic acid as a supplement on animal performance, iron status, and immune response in farm animals:A review[J].Animals, 2020, 10(8):1 352.
[5] BROEKX S, WEYNS F, DE VLEESCHOUWER S.5-Aminolevulinic acid for recurrent malignant gliomas:A systematic review[J].Clinical Neurology and Neurosurgery, 2020, 195:105913.
[6] WAINWRIGHT J V, ENDO T, COOPER J B, et al.The role of 5-aminolevulinic acid in spinal tumor surgery:A review[J].Journal of Neuro-Oncology, 2019, 141(3):575-584.
[7] KAMIYAMA H, HOTTA Y, TANAKA T, et al.Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium[J].Seibutsu-Kogaku Kaishi, 2002, 78(2):48-55.
[8] KANG Z, WANG Y, GU P F, et al.Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose[J].Metabolic Engineering, 2011, 13(5):492-498.
[9] CUI Z Y, ZHU Z W, ZHANG J H, et al.Efficient 5-aminolevulinic acid production through reconstructing the metabolic pathway in SDH-deficient Yarrowia lipolytica[J].Biochemical Engineering Journal, 2021, 174:108125.
[10] 王丽君, 闫思翰, 杨套伟, 等.代谢改造重组谷氨酸棒杆菌C4途径高效合成5-氨基乙酰丙酸[J].生物工程学报, 2021, 37(12):4 314-4 328.
WANG L J, YAN S H, YANG T W, et al.Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid[J].Chinese Journal of Biotechnology, 2021, 37(12):4 314-4 328.
[11] NOH M H, LIM H G, PARK S, et al.Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli[J].Metabolic Engineering, 2017, 43:1-8.
[12] SHIH I T, YI Y C, NG I S.Plasmid-free system and modular design for efficient 5-aminolevulinic acid production by engineered Escherichia coli[J].Applied Biochemistry and Biotechnology, 2021, 193(9):2 858-2 871.
[13] CHEN J Z, WANG Y, GUO X, et al.Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum[J].Biotechnology for Biofuels, 2020, 13:41.
[14] 李智祥, 赵磊, 梁云龙, 等.生物法合成5-氨基乙酰丙酸的研究进展[J].发酵科技通讯, 2017, 46(3):178-182.
LI Z X, ZHAO L, LIANG Y L, et al.Advance on biosynthesis of 5-aminolevulinic acid[J].Bulletin of Fermentation Science and Technology, 2017, 46(3):178-182.
[15] RAMZI A B, HYEON J E, KIM S W, et al.5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway[J].Enzyme and Microbial Technology, 2015, 81:1-7.
[16] YU X L, JIN H Y, LIU W J, et al.Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose[J].Microbial Cell Factories, 2015, 14:183.
[17] ZHANG B, YE B C.Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production[J].3 Biotech, 2018, 8(5):247.
[18] KO Y J, YOU S K, KIM M, et al.Enhanced production of 5-aminolevulinic acid via flux redistribution of TCA cycle toward L-glutamate in Corynebacterium glutamicum[J].Biotechnology and Bioprocess Engineering, 2019, 24(6):915-923.
[19] ZHANG J L, WENG H J, ZHOU Z X, et al.Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli[J].Bioresource Technology, 2019, 274:353-360.
[20] EGGELING L, BOTT M.Handbook of Corynebacterium glutamicum[M].Boca Raton:CRC Press, 2005.
[21] SAMBROOK J, MACCALLUM P, RUSSELL D.Molecular Cloning:A Laboratory Manual[M].New York:Cold Spring Harbor Laboratory Press, 2001.
[22] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method[J].Methods:A Companion to Methods in Enzymology, 2013, 25(4):402-408.
[23] SHIIO I, UJIGAWA-TAKEDA K.Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate producing bacterium, Brevibacterium flavum[J].Agricultural and Biological Chemistry, 1980, 44(8):1 897-1 904.
[24] 程雪莲, 王倩, 祁庆生.pH及溶氧对重组大肠杆菌发酵生产5-氨基乙酰丙酸的影响[J].中国酿造, 2016, 35(11):145-148.
CHENG X L, WANG Q, QI Q S.Effect of pH and dissolved oxygen on the fermentation production of 5-aminolevulinic acid by recombinant Escherichia coli[J].China Brewing, 2016, 35(11):145-148.
[25] MAUZERALL D, GRANICK S.The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine[J].Journal of Biological Chemistry, 1956, 219(1):435-446.
[26] SINCLAIR P R, GORMAN N, JACOBS J M.Measurement of heme concentration[J].Current Protocols in Toxicology, 2001.DOI:10.1002/0471140856.tx0803s00.
[27] KRAWCZYK S, RAASCH K, SCHULTZ C, et al.The FHA domain of OdhI interacts with the carboxyterminal 2-oxoglutarate dehydrogenase domain of OdhA in Corynebacterium glutamicum[J].FEBS Letters, 2010, 584(8):1 463-1 468.
[28] CHENG F Y, YU H M, STEPHANOPOULOS G.Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J].Metabolic Engineering, 2019, 55:276-289.
[29] MA Y C, CUI Y, DU L U, et al.Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum[J].Microbial Cell Factories, 2018, 17(1):185.
[30] SIMIC P, SAHM H, EGGELING L.L-threonine export:Use of peptides to identify a new translocator from Corynebacterium glutamicum[J].Journal of Bacteriology, 2001, 183(18):5 317-5 324.