研究报告

2,4-二氯苯氧乙酸与盐胁迫联合提高小球藻的产脂量

  • 王依霖 ,
  • 莫创荣 ,
  • 许雪棠 ,
  • 黄丽珍 ,
  • 谭顺 ,
  • 陆祖逸 ,
  • 王露洁 ,
  • 庞瑞林
展开
  • 1(广西大学 资源环境与材料学院,广西 南宁,530004)
    2(广西大学 化学化工学院,广西 南宁,530004)
第一作者:硕士研究生(莫创荣副教授为通信作者,E-mail:mochuangrong@163.com)

收稿日期: 2022-02-16

  修回日期: 2022-03-18

  网络出版日期: 2023-01-06

基金资助

国家自然科学基金地区项目(22065003)

2,4-dichlorophenoxyacetic acid combined with salt stress increased lipid production of Chlorella vulgaris

  • WANG Yilin ,
  • MO Chuangrong ,
  • XU Xuetang ,
  • HUANG Lizhen ,
  • TAN Shun ,
  • LU Zuyi ,
  • WANG Lujie ,
  • PANG Ruilin
Expand
  • 1(College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China)
    2(College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China)

Received date: 2022-02-16

  Revised date: 2022-03-18

  Online published: 2023-01-06

摘要

研究了植物激素2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid,2,4-D)与盐胁迫联合培养对小球藻(Chlorella vulgaris)生长、产脂的影响,并进一步分析了小球藻的生理生化指标及脂肪酸成分的变化。结果表明,在2,4-D与盐胁迫的联合处理下,小球藻的生物量与之单独盐胁迫条件下相比最高可提高55.45%,油脂含量也进一步提高了10.47%,所得最大油脂生产力比单独盐胁迫时高出65.8%。在10 g/L NaCl与2 mg/L 2,4-D的培养条件下,随培养时间增加,小球藻的叶绿素a、类胡萝卜素以及可溶性蛋白含量上升,碳水化合物含量呈先下降后上升的趋势,饱和脂肪酸含量也达到了37.79%。试验通过植物激素与盐胁迫联合的方式实现了小球藻快速生长与高效率积累油脂相结合,为规模化生产生物燃料奠定了基础。

本文引用格式

王依霖 , 莫创荣 , 许雪棠 , 黄丽珍 , 谭顺 , 陆祖逸 , 王露洁 , 庞瑞林 . 2,4-二氯苯氧乙酸与盐胁迫联合提高小球藻的产脂量[J]. 食品与发酵工业, 2022 , 48(24) : 105 -110 . DOI: 10.13995/j.cnki.11-1802/ts.031174

Abstract

The effects of plant hormone 2,4-dichlorophenoxyacetic acid (2,4-D) combined with salt stress on the growth and lipid production of Chlorella vulgaris were studied, and the changes of physiological and biochemical indexes and fatty acid composition of C. vulgaris were further analyzed. The results showed that under the combined treatment of 2,4-D and salt stress, the biomass of C. vulgaris was increased by 55.45% and the oil content was further increased by 10.47% compared with that under salt stress alone. The maximum oil productivity was 65.8% higher than that under salt stress alone. Under the culture conditions of 10 g/L NaCl and 2 mg/L 2,4-D, with the increase of culture time, the contents of chlorophyll a, carotenoid and soluble protein of C. vulgaris increased, the content of carbohydrate decreased first and then increased, and the content of saturated fatty acid also reached 37.79%. Through the combination of plant hormones and salt stress, the experiment realized the combination of rapid growth of C. vulgaris and efficient accumulation of oil, which laid the foundation for large-scale production of biofuels.

参考文献

[1] ZHAO Y T, WANG H P, HAN B Y, et al.Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products.by microalgae:A review[J].Bioresource Technology, 2019, 274:549-556.
[2] RUIZ J, OLIVIERI G, DE VREE J, et al.Towards industrial products from microalgae[J].Energy & Environmental Science, 2016, 9(10):3 036-3 043.
[3] HANG L T, MORI K, TANAKA Y, et al.Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses[J].Bioprocess and Biosystems Engineering, 2020, 43(6):971-980.
[4] QIAO T S, ZHAO Y T, ZHONG D B, et al.Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium[J].Algal Research, 2021, 53:102017.
[5] 韩飞. 高温胁迫与超声刺激促进微藻油脂积累的过程及机理[D].济南:山东大学, 2016.
HAN F.The mechanism of microalgae lipid accumulation induced by high-temperature stress and ultrasonic stimulation[D].Jinan:Shandong University, 2016.
[6] LI D F, ZHAO Y T, DING W, et al.A strategy for promoting lipid production in green microalgae Monoraphidium sp.QLY-1 by combined melatonin and photoinduction[J].Bioresource Technology, 2017, 235:104-112.
[7] 郝宗娣, 刘平怀, 时杰, 等.不同植物激素对原始小球藻生长及油脂含量的影响[J].广东农业科学, 2012, 39(8):104-107.
HAO Z D, LIU P H, SHI J, et al.Effects of phytohormone on growth and fatty acid composition of Chlorella vulgaris[J].Guangdong Agricultural Sciences, 2012, 39(8):104-107.
[8] 史成颖, 蔡为荣, 甘旭华, 等.6种植物生长调节剂对钝顶螺旋藻生长的影响[J].安徽农业大学学报, 2004, 31(1):26-29.
SHI C Y, CAI W R, GAN X H, et al.Effects of six plant growth regulators on the growth of Spirulina platensis A9[J].Journal of Anhui Agricultural University, 2004, 31(1):26-29.
[9] ZHANG L J, PEI H Y, CHEN S Q, et al.Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae[J].Bioresource Technology, 2018, 250:449-456.
[10] BABU A G, WU X G, KABRA A N, et al.Cultivation of an indigenous Chlorella sorokiniana with phytohormones for biomass and lipid production under N-limitation[J].Algal Research, 2017, 23:178-185.
[11] 崔演斌. 胁迫条件下蛋白核小球藻产油过程生理生化及油脂合成关键基因表达规律的研究[D].上海:华东理工大学, 2013.
CUI Y B.The physiological features and expression patterns of key genes in lipid synthesis pathway of Chlorella pyrenoidosa under stress conditions[D].Shanghai:East China University of Science and Technology, 2013.
[12] 张磊. 胁迫条件下蛋白核小球藻胞内活性氧介导油脂生物合成的机制研究[D].重庆:重庆大学, 2019.
ZHANG L.Regulatory mechanism of cellular reactive oxygen species on lipid biosynthesis in Chlorella pyrenoidosa under stress conditions[D].Chongqing:Chongqing University, 2019.
[13] 焦洁. 考马斯亮蓝G-250染色法测定苜蓿中可溶性蛋白含量[J].农业工程技术, 2016, 36(17):33-34.
JIAO J.Determination of soluble protein content in alfalfa by Coomassie brilliant blue G-250 staining method[J].Agricultural Engineering Technology, 2016, 36(17):33-34.
[14] LI X M, LI X Y, HAN B Y, et al.Improvement in lipid production in Monoraphidium sp.QLY-1 by combining fulvic acid treatment and salinity stress[J].Bioresource Technology, 2019, 294:122179.
[15] SRIVASTAVA G, NISHCHAL GOUD V V.Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_O47)[J].Bioresource Technology, 2017, 242:244-252.
[16] ZHAO Y, LI D, DING K, et al.Production of biomass and lipids by the oleaginous microalgae Monoraphidium ap.QLY-1 through heterotrophic cultivation and photo-chemical modulator induction[J].Bioresource Technology, 2016, 211:669-676.
[17] 王涛. 原壳小球藻筛选/异养培养优化及盐胁迫下油脂积累机理研究[D].上海:华东理工大学, 2016.
WANG T.Specie screening/heterotrophic culture optimization of Chlorella protothecoides and research on mechanisms of lipid accumulation under salt stress[D].Shanghai:East China University of Science and Technology, 2016.
[18] YU X J, SUN J, SUN Y Q, et al.Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp.[J].Biochemical Engineering Journal, 2016, 112:258-268.
[19] HO S H, NAKANISHI A, KATO Y, et al.Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp.JSC4[J].Scientific Reports, 2017, 7(1):45471.
[20] GOUR R S, GARLAPATI V K, KANT A.Effect of Salinity Stress on lipid accumulation in Scenedesmus sp.and Chlorella sp.:Feasibility of stepwise culturing[J].Current Microbiology, 2020, 77(5):779-785.
文章导航

/