研究报告

植物乳植杆菌CCFM8661缓解铅中毒小鼠毒性作用的研究

  • 郭政涛 ,
  • 项芳琴 ,
  • 张鹏 ,
  • 刘飞 ,
  • 李柏良
展开
  • (东北农业大学 食品学院, 黑龙江 哈尔滨, 150030)
第一作者:硕士研究生(刘飞教授和李柏良教授为共同通信作者,E-mail:david.as@163.com;15846092362@163.com)

收稿日期: 2023-11-14

  修回日期: 2024-02-01

  网络出版日期: 2025-02-21

基金资助

国家自然科学基金面上项目(32072190);黑龙江省重点研发计划项目(创新基地)(JD2023SJ15)

Study on toxic effect of Lactiplantibacillus plantarum CCFM8661 on alleviating lead poisoning in mice

  • GUO Zhengtao ,
  • XIANG Fangqin ,
  • ZHANG Peng ,
  • LIU Fei ,
  • LI Bailiang
Expand
  • (College of Food Science, Northeast Agricultural University, Harbin 150030, China)

Received date: 2023-11-14

  Revised date: 2024-02-01

  Online published: 2025-02-21

摘要

重金属铅摄入对生物体造成不利影响,严重时引发肾脏和肝脏的不可逆损伤。植物乳植杆菌被认为是重要的益生菌,对生物体产生诸多益处。该研究旨在阐明植物乳植杆菌CCFM8661对铅中毒小鼠毒性作用的缓解效果。该研究针对BALB/c小鼠,灌胃醋酸铅水溶液建立铅中毒小鼠模型,利用酶联免疫试验、组织病理学等方法测定补充植物乳植杆菌CCFM8661对铅中毒小鼠的毒性作用的缓解效果。结果发现,模型组的体重、抗氧化能力、组织病理以及组织含铅量较对照组相比均发生显著的负面变化,说明造模有效。补充植物乳植杆菌CCFM8661能够逆转模型组中的体重、抗氧化能力、组织病理学以及组织含铅量的恶化,缓解铅中毒小鼠的毒性作用。该研究为开发针对慢性铅中毒的益生菌治疗方法提供了理论依据。

本文引用格式

郭政涛 , 项芳琴 , 张鹏 , 刘飞 , 李柏良 . 植物乳植杆菌CCFM8661缓解铅中毒小鼠毒性作用的研究[J]. 食品与发酵工业, 2025 , 51(3) : 58 -63 . DOI: 10.13995/j.cnki.11-1802/ts.037944

Abstract

Heavy metal lead ingestion can have detrimental effects on organisms, leading to irreversible damage to the kidneys and liver.Lactiplantibacillus plantarum is considered an important probiotic and has been recognized for its various advantages for organisms.This study aimed to investigate the protective effect of L. plantarum CCFM8661 against lead toxicity in mice.Using BALB/c mice, a lead poisoning mouse model was established by orally administering lead acetate solution.Enzyme-linked immunosorbent assay and histopathology were employed to evaluate the mitigating effect of L. plantarum CCFM8661 on lead toxicity in mice.Results revealed significant negative changes in body weight, antioxidant capacity, kidney tissue pathology, and tissue lead content in the model group compared to the control group, indicating the successful establishment of the model.However, supplementation with L. plantarum CCFM8661 reversed the deterioration observed in the model group, including body weight, antioxidant capacity, histopathology, and tissue lead content.Consequently, this study provides a theoretical foundation for developing probiotic treatment methods targeting chronic lead poisoning.

参考文献

[1] RIASATIAN M, MAZLOOMI S M, AHMADI A, et al.Benefits of fermented synbiotic soymilk containing Lactobacillus acidophilus, Bifidobacterium lactis, and inulin towards lead toxicity alleviation[J].Heliyon, 2023, 9(6):e17518.
[2] SHUKLA V, SHUKLA P, TIWARI A.Lead poisoning[J].Indian Journal of Medical Specialities, 2018, 9(3):146-149.
[3] BHATTACHARYA S.Probiotics against alleviation of lead toxicity:Recent advances[J].Interdisciplinary Toxicology, 2019, 12(2):89-92.
[4] MU Y, YU J Q, JI W H, et al.Alleviation of Pb2+ pollution-induced oxidative stress and toxicity in microglial cells and zebrafish larvae by chicoric acid[J].Ecotoxicology and Environmental Safety, 2019, 180:396-402.
[5] LIU K S, HAO J H, ZENG Y, et al.Neurotoxicity and biomarkers of lead exposure:A review[J].Chinese Medical Sciences Journal, 2013, 28(3):178-188.
[6] TINKOV A A, GRITSENKO V A, SKALNAYA M G, et al.Gut as a target for cadmium toxicity[J].Environmental Pollution, 2018, 235:429-434.
[7] MARKOWITZ M E, SINNETT M, ROSEN J F.A randomized trial of calcium supplementation for childhood lead poisoning[J].Pediatrics, 2004, 113(1):34-39.
[8] WALTER K.What is lead poisoning?[J].JAMA, 2023, 329(12):1040.
[9] MUHAMMAD Z, RAMZAN R, ZHANG R F, et al.Assessment of in vitro and in vivo bioremediation potentials of orally supplemented free and microencapsulated Lactobacillus acidophilus KLDS strains to mitigate the chronic lead toxicity[J].Frontiers in Bioengineering and Biotechnology, 2021, 9:698349.
[10] SEDDIK H A, BENDALI F, GANCEL F, et al.Lactobacillus plantarum and its probiotic and food potentialities[J].Probiotics and Antimicrobial Proteins, 2017, 9(2):111-122.
[11] LIU Y W, LIONG M T, TSAI Y C.New perspectives of Lactobacillus plantarum as a probiotic:The gut-heart-brain axis[J].Journal of Microbiology, 2018, 56(9):601-613.
[12] 张亮, 于哲, 张慧敏, 等.具有吸附重金属铅能力乳酸菌的安全性评价[J].中国乳品工业, 2022, 50(6):33-38.
ZHANG L, YU Z, ZHANG H M, et al.Safety evaluation of lactic acid bacteria capable of adsorbing heavy metal lead[J].China Dairy Industry, 2022, 50(6):33-38.
[13] YU L L, ZHANG L Y, DUAN H, et al.The protection of Lactiplantibacillus plantarum CCFM8661 against benzopyrene-induced toxicity via regulation of the gut microbiota[J].Frontiers in Immunology, 2021, 12:736129.
[14] GAO Y, LIU Y J, MA F L, et al.Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection[J].Food & Function, 2021, 12(1):373-386.
[15] HU L H, ZHAO Y, YOU T, et al.Lactiplantibacillus plantarum P101 alleviated lead-induced more severe hepatic injury in obese mice, by promoting fecal lead excretion and enhancing antioxidative defense system[J].Journal of Applied Microbiology, 2023, 134(4):lxad061.
[16] HALLIWELL B.Understanding mechanisms of antioxidant action in health and disease[J].Nature Reviews.Molecular Cell Biology, 2024, 25(1):13-33.
[17] KLOTZ K, GÖEN T.6.human biomonitoring of lead exposure[M].Metal Ions in Life Sciences, 2017:17.
[18] REHMAN K, FATIMA F, WAHEED I, et al.Prevalence of exposure of heavy metals and their impact on health consequences[J].Journal of Cellular Biochemistry, 2018, 119(1):157-184.
[19] FU Z S, XI S H.The effects of heavy metals on human metabolism[J].Toxicology Mechanisms and Methods, 2020, 30(3):167-176.
[20] LI Y T, LIU A F, CHEN L X, et al.Lactobacillus plantarum WSJ-06 alleviates neurobehavioral injury induced by lead in mice through the gut microbiota[J].Food and Chemical Toxicology, 2022, 167:113308.
[21] SIES H.Oxidative stress:A concept in redox biology and medicine[J].Redox Biology, 2015, 4:180-183.
[22] SIES H.Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress:Oxidative eustress[J].Redox Biology, 2017, 11:613-619.
[23] SHI L, WANG X L, DUAN Y L, et al.Antagonistic effects of selenium on lead-induced oxidative stress and apoptosis of Leydig cells in sheep[J].Theriogenology, 2022, 185:43-49.
[24] XU X W, LIU S J, ZHAO Y, et al.Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice[J].Journal of the Science of Food and Agriculture, 2022, 102(15):6848-6857.
[25] ZHANG Z, LI J H, JIANG S M, et al.Lactobacillus fermentum HNU312 alleviated oxidative damage and behavioural abnormalities during brain development in early life induced by chronic lead exposure[J].Ecotoxicology and Environmental Safety, 2023, 251:114543.
文章导航

/