研究报告

谷氨酸棒杆菌3-磷酸甘油酸脱氢酶的定向进化改造研究

  • 黄新燕 ,
  • 孙慕娇 ,
  • 杜穆花 ,
  • 潘越 ,
  • 张心语 ,
  • 张瑶函 ,
  • 徐宁 ,
  • 刘君 ,
  • 鞠建松 ,
  • 魏亮
展开
  • 1(河北师范大学 生命科学学院, 河北 石家庄, 050024)
    2(中国科学院 天津工业生物技术研究所, 天津, 300308)
    3(天津科技大学 生物工程学院, 天津, 300457)
    4(天津科技大学 食品科学与工程学院, 天津, 300457)
第一作者:硕士研究生(魏亮副研究员和鞠建松教授为共同通信作者,E-mail:weil@tib.cas.cn;jujiansong@126.com)

收稿日期: 2024-02-01

  修回日期: 2024-04-02

  网络出版日期: 2025-02-21

基金资助

国家重点研发计划项目(2021YFC2100700)

Directed evolution of 3-phosphoglycerate dehydrogenase from Corynebacterium glutamicum

  • HUANG Xinyan ,
  • SUN Mujiao ,
  • DU Muhua ,
  • PAN Yue ,
  • ZHANG Xinyu ,
  • ZHANG Yaohan ,
  • XU Ning ,
  • LIU Jun ,
  • JU Jiansong ,
  • WEI Liang
Expand
  • 1(College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China)
    2(Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China)
    3(College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
    4(College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)

Received date: 2024-02-01

  Revised date: 2024-04-02

  Online published: 2025-02-21

摘要

3-磷酸甘油酸脱氢酶(3-phosphoglycerate dehydrogenase, PGDH)是L-丝氨酸生物合成途径的限速酶,是影响L-丝氨酸高效合成的关键。该研究以来源于谷氨酸棒杆菌(Corynebacterium glutamicum)的PGDH为研究对象,通过对其酶学性质进行测试分析发现,Cg-PGDH的酶活性仅为1.98 U/mg,而且热稳定性较差,严重制约了L-丝氨酸的高效生物合成。针对这一关键问题,该研究采用定向进化和高通量筛选的方法对Cg-PGDH进行改造,提高酶的催化活性和热稳定性。通过多轮筛选,最终获得了5个催化活性显著提升的突变体,P85Q、D365Y、A389T、A183V、I231V。其中,突变体P85Q的酶活性提升了1.55倍,并显著提高了酶的温度稳定性,最适催化温度达到60 ℃。随后该研究对P85Q、D365Y、A389T、A183V、I231V等5个突变体的突变位点进行组合突变,获得了温度稳定性进一步提高的突变体P85Q-D365Y。通过对Cg-PGDH突变位点的三维结构解析和分子动力学模拟实验发现,尽管突变体P85Q与D365Y的突变位点不位于Cg-PGDH催化活性中心,但是可通过蛋白结构形变增强Cg-PGDH活性中心130~140区间loop的稳定性,从而增加了酶的底物亲和性和催化活性。相关研究成果为进一步解析PGDH催化机制,提高PGDH催化活性提供了重要的研究基础和方向。

本文引用格式

黄新燕 , 孙慕娇 , 杜穆花 , 潘越 , 张心语 , 张瑶函 , 徐宁 , 刘君 , 鞠建松 , 魏亮 . 谷氨酸棒杆菌3-磷酸甘油酸脱氢酶的定向进化改造研究[J]. 食品与发酵工业, 2025 , 51(3) : 89 -96 . DOI: 10.13995/j.cnki.11-1802/ts.038795

Abstract

3-Phosphoglycerate dehydrogenase (PGDH) is the rate-limiting enzyme in the biosynthetic pathway of L-serine, playing a crucial role in efficient L-serine synthesis.In this study, the enzymatic characteristics of PGDH from Corynebacterium.glutamicum was investigated.The results indicated that the enzyme activity of Cg-PGDH was only 1.98 U/mg with poor thermal stability, which significantly hindered the high-efficiency biosynthesis of L-serine.To address this issue, directed evolution and high-throughput screening were employed to enhance the catalytic activity and thermal stability of Cg-PGDH.Through multiple rounds of screening, five mutants with significantly improved catalytic activity were obtained, including P85Q, D365Y, A389T, A183V, and I231V.Notably, the P85Q mutant exhibited a 1.55-fold increase in enzyme activity and significantly improved temperature stability, demonstrating an optimum catalytic temperature of 60 ℃.Subsequently, the combined mutations on the mutation sites of five mutants including P85Q, D365Y, A389T, A183V, and I231V were conducted, leading to the mutant P85Q-D365Y with enhanced temperature stability.Structural analysis and molecular dynamics simulations of the mutated sites within Cg-PGDH revealed that, despite P85Q and D365Y not being located in the catalytic center, they enhanced the stability of the loop in the 130-140 region, thereby increasing substrate affinity and catalytic activity.These research findings provided a significant foundation and direction for further elucidating the catalytic mechanism of Cg-PGDH and enhancing its catalytic activity.

参考文献

[1] MITSUHASHI S.Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides[J].Current Opinion in Biotechnology, 2014, 26:38-44.
[2] 卢发, 张伟国.L-丝氨酸产生菌的分离筛选及发酵条件[J].食品与生物技术学报, 2005, 24(2):46-49; 54.
LU F, ZHANG W G.Screening of L-serine producer and the fermentation conditions in shake-flask culture[J].Journal of Food Science and Biotechnology, 2005, 24(2):46-49; 54.
[3] EAGLE H.Amino acid metabolism in mammalian cell cultures[J].Science, 1959, 130(3373):432-437.
[4] FAN W, TANG S, FAN X J, et al.SIRT1 regulates sphingolipid metabolism and neural differentiation of mouse embryonic stem cells through c-Myc-SMPDL3B[J].eLife, 2021, 10:e67452.
[5] PHONE MYINT S M M, SUN L Y.L-serine:Neurological implications and therapeutic potential[J].Biomedicines, 2023, 11(8):2117.
[6] 杨帆. 利用重组大肠杆菌生产L-丝氨酸的研究[D].济南:山东大学, 2013.
YANG F.Production of L-serine in recombinant Escherichia coli[D].Jinan:Shandong University, 2013.
[7] 克丽凤, 张伟国, 钱和.L-丝氨酸的生产及其应用[J].江苏食品与发酵, 2001(2):19-22.
KE L F, ZHANG W G, QIAN H.Production and application of L-serine[J].Jiangsu Food and Fermentation, 2001(2):19-22.
[8] EFFENBERGER F, ZOLLER G.Amino acids;13 Investigations on the synthesis of dl-serine from α-haloacrylic acid derivatives[J].Tetrahedron, 1988, 44(17):5573-5582.
[9] ZHU G Y, ZHU X, WAN X L, et al.Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water[J].Journal of Analytical and Applied Pyrolysis, 2010, 88(2):187-191.
[10] JIANG W, XIA B Z, LIU Z D.A serine hydroxymethyltransferase from marine bacterium Shewanella algae:Isolation, purification, characterization and L-serine production[J].Microbiological Research, 2013, 168(8):477-484.
[11] 朱林江, 李崎.L-丝氨酸的微生物法制备研究进展[J].食品与发酵工业, 2015, 41(1):181-185.
ZHU L J, LI Q.Microbial production of L-serine[J].Food and Fermentation Industries, 2015, 41(1):181-185.
[12] XU G Q, JIN X X, GUO W, et al.Characterization, modification, and overexpression of 3-phosphoglycerate dehydrogenase in Corynebacterium glutamicum for enhancing L-serine production[J].Annals of Microbiology, 2015, 65(2):929-935.
[13] BELL J K, PEASE P J, BELL J E, et al.De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal[J].European Journal of Biochemistry, 2002, 269(17):4176-4184.
[14] GRANT G A.Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions[J].Biochemistry, 2011, 50(14):2900-2906.
[15] GRANT G A, XU X L, HU Z.Role of an interdomain Gly-Gly sequence at the regulatory-substrate domain interface in the regulation of Escherichia coli D-3-phosphoglycerate dehydrogenase[J].Biochemistry, 2000, 39(24):7316-7319.
[16] 金雪霞. 基因serA及sdaA对谷氨酸棒杆菌SYPS-062积累L-丝氨酸的影响分析[D].无锡:江南大学, 2011.
JIN X X.Effects of genes serA and sdaA on accumulation of L-serine in Corynebacterium glutamicum SYPS-062[D].Wuxi:Jiangnan University, 2011.
[17] 来书娟, 张芸, 刘树文, 等.产L-丝氨酸谷氨酸棒杆菌的代谢工程改造和代谢流分析[J].中国科学:生命科学, 2012, 42(4):295-303.
LAI S J, ZHANG Y, LIU S W, et al.Metabolic engineering and metabolic flux analysis of L-serine-producing Corynebacterium glutamicum[J].Scientia Sinica (Vitae), 2012, 42(4):295-303.
[18] PETERS-WENDISCH P, NETZER R, EGGELING L, et al.3-phosphoglycerate dehydrogenase from Corynebacterium glutamicum:The C-terminal domain is not essential for activity but is required for inhibition by L-serine[J].Applied Microbiology and Biotechnology, 2002, 60(4):437-441.
[19] 邓辉, 陈存武, 孙传伯, 等.大肠杆菌磷酸甘油酸脱氢酶突变体的构建及抗反馈抑制效应[J].生物工程学报, 2016, 32(4):468-477.
DENG H, CHEN C W, SUN A, et al.Construction and characterization of Escherichia coli D-3-phosphoglycerate dehydrogenase mutants with feedback-inhibition relief[J].Chinese Journal of Biotechnology, 2016, 32(4):468-477.
[20] SINGH R K, RAJ I, PUJARI R, et al.Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine[J].The FEBS Journal, 2014, 281(24):5498-5512.
[21] 周翠燕, 俞敏达, 李文奇.三种测定蛋白质热稳定性方法的比较[J].分析测试技术与仪器, 2021, 27(4):252-259.
ZHOU C Y, YU M D, LI W Q.Comparation of three measuring methods for thermodynamic stability of protein[J].Analysis and Testing Technology and Instruments, 2021, 27(4):252-259.
文章导航

/