3-磷酸甘油酸脱氢酶(3-phosphoglycerate dehydrogenase, PGDH)是L-丝氨酸生物合成途径的限速酶,是影响L-丝氨酸高效合成的关键。该研究以来源于谷氨酸棒杆菌(Corynebacterium glutamicum)的PGDH为研究对象,通过对其酶学性质进行测试分析发现,Cg-PGDH的酶活性仅为1.98 U/mg,而且热稳定性较差,严重制约了L-丝氨酸的高效生物合成。针对这一关键问题,该研究采用定向进化和高通量筛选的方法对Cg-PGDH进行改造,提高酶的催化活性和热稳定性。通过多轮筛选,最终获得了5个催化活性显著提升的突变体,P85Q、D365Y、A389T、A183V、I231V。其中,突变体P85Q的酶活性提升了1.55倍,并显著提高了酶的温度稳定性,最适催化温度达到60 ℃。随后该研究对P85Q、D365Y、A389T、A183V、I231V等5个突变体的突变位点进行组合突变,获得了温度稳定性进一步提高的突变体P85Q-D365Y。通过对Cg-PGDH突变位点的三维结构解析和分子动力学模拟实验发现,尽管突变体P85Q与D365Y的突变位点不位于Cg-PGDH催化活性中心,但是可通过蛋白结构形变增强Cg-PGDH活性中心130~140区间loop的稳定性,从而增加了酶的底物亲和性和催化活性。相关研究成果为进一步解析PGDH催化机制,提高PGDH催化活性提供了重要的研究基础和方向。
黄新燕
,
孙慕娇
,
杜穆花
,
潘越
,
张心语
,
张瑶函
,
徐宁
,
刘君
,
鞠建松
,
魏亮
. 谷氨酸棒杆菌3-磷酸甘油酸脱氢酶的定向进化改造研究[J]. 食品与发酵工业, 2025
, 51(3)
: 89
-96
.
DOI: 10.13995/j.cnki.11-1802/ts.038795
3-Phosphoglycerate dehydrogenase (PGDH) is the rate-limiting enzyme in the biosynthetic pathway of L-serine, playing a crucial role in efficient L-serine synthesis.In this study, the enzymatic characteristics of PGDH from Corynebacterium.glutamicum was investigated.The results indicated that the enzyme activity of Cg-PGDH was only 1.98 U/mg with poor thermal stability, which significantly hindered the high-efficiency biosynthesis of L-serine.To address this issue, directed evolution and high-throughput screening were employed to enhance the catalytic activity and thermal stability of Cg-PGDH.Through multiple rounds of screening, five mutants with significantly improved catalytic activity were obtained, including P85Q, D365Y, A389T, A183V, and I231V.Notably, the P85Q mutant exhibited a 1.55-fold increase in enzyme activity and significantly improved temperature stability, demonstrating an optimum catalytic temperature of 60 ℃.Subsequently, the combined mutations on the mutation sites of five mutants including P85Q, D365Y, A389T, A183V, and I231V were conducted, leading to the mutant P85Q-D365Y with enhanced temperature stability.Structural analysis and molecular dynamics simulations of the mutated sites within Cg-PGDH revealed that, despite P85Q and D365Y not being located in the catalytic center, they enhanced the stability of the loop in the 130-140 region, thereby increasing substrate affinity and catalytic activity.These research findings provided a significant foundation and direction for further elucidating the catalytic mechanism of Cg-PGDH and enhancing its catalytic activity.
[1] MITSUHASHI S.Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides[J].Current Opinion in Biotechnology, 2014, 26:38-44.
[2] 卢发, 张伟国.L-丝氨酸产生菌的分离筛选及发酵条件[J].食品与生物技术学报, 2005, 24(2):46-49; 54.
LU F, ZHANG W G.Screening of L-serine producer and the fermentation conditions in shake-flask culture[J].Journal of Food Science and Biotechnology, 2005, 24(2):46-49; 54.
[3] EAGLE H.Amino acid metabolism in mammalian cell cultures[J].Science, 1959, 130(3373):432-437.
[4] FAN W, TANG S, FAN X J, et al.SIRT1 regulates sphingolipid metabolism and neural differentiation of mouse embryonic stem cells through c-Myc-SMPDL3B[J].eLife, 2021, 10:e67452.
[5] PHONE MYINT S M M, SUN L Y.L-serine:Neurological implications and therapeutic potential[J].Biomedicines, 2023, 11(8):2117.
[6] 杨帆. 利用重组大肠杆菌生产L-丝氨酸的研究[D].济南:山东大学, 2013.
YANG F.Production of L-serine in recombinant Escherichia coli[D].Jinan:Shandong University, 2013.
[7] 克丽凤, 张伟国, 钱和.L-丝氨酸的生产及其应用[J].江苏食品与发酵, 2001(2):19-22.
KE L F, ZHANG W G, QIAN H.Production and application of L-serine[J].Jiangsu Food and Fermentation, 2001(2):19-22.
[8] EFFENBERGER F, ZOLLER G.Amino acids;13 Investigations on the synthesis of dl-serine from α-haloacrylic acid derivatives[J].Tetrahedron, 1988, 44(17):5573-5582.
[9] ZHU G Y, ZHU X, WAN X L, et al.Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water[J].Journal of Analytical and Applied Pyrolysis, 2010, 88(2):187-191.
[10] JIANG W, XIA B Z, LIU Z D.A serine hydroxymethyltransferase from marine bacterium Shewanella algae:Isolation, purification, characterization and L-serine production[J].Microbiological Research, 2013, 168(8):477-484.
[11] 朱林江, 李崎.L-丝氨酸的微生物法制备研究进展[J].食品与发酵工业, 2015, 41(1):181-185.
ZHU L J, LI Q.Microbial production of L-serine[J].Food and Fermentation Industries, 2015, 41(1):181-185.
[12] XU G Q, JIN X X, GUO W, et al.Characterization, modification, and overexpression of 3-phosphoglycerate dehydrogenase in Corynebacterium glutamicum for enhancing L-serine production[J].Annals of Microbiology, 2015, 65(2):929-935.
[13] BELL J K, PEASE P J, BELL J E, et al.De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal[J].European Journal of Biochemistry, 2002, 269(17):4176-4184.
[14] GRANT G A.Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions[J].Biochemistry, 2011, 50(14):2900-2906.
[15] GRANT G A, XU X L, HU Z.Role of an interdomain Gly-Gly sequence at the regulatory-substrate domain interface in the regulation of Escherichia coli D-3-phosphoglycerate dehydrogenase[J].Biochemistry, 2000, 39(24):7316-7319.
[16] 金雪霞. 基因serA及sdaA对谷氨酸棒杆菌SYPS-062积累L-丝氨酸的影响分析[D].无锡:江南大学, 2011.
JIN X X.Effects of genes serA and sdaA on accumulation of L-serine in Corynebacterium glutamicum SYPS-062[D].Wuxi:Jiangnan University, 2011.
[17] 来书娟, 张芸, 刘树文, 等.产L-丝氨酸谷氨酸棒杆菌的代谢工程改造和代谢流分析[J].中国科学:生命科学, 2012, 42(4):295-303.
LAI S J, ZHANG Y, LIU S W, et al.Metabolic engineering and metabolic flux analysis of L-serine-producing Corynebacterium glutamicum[J].Scientia Sinica (Vitae), 2012, 42(4):295-303.
[18] PETERS-WENDISCH P, NETZER R, EGGELING L, et al.3-phosphoglycerate dehydrogenase from Corynebacterium glutamicum:The C-terminal domain is not essential for activity but is required for inhibition by L-serine[J].Applied Microbiology and Biotechnology, 2002, 60(4):437-441.
[19] 邓辉, 陈存武, 孙传伯, 等.大肠杆菌磷酸甘油酸脱氢酶突变体的构建及抗反馈抑制效应[J].生物工程学报, 2016, 32(4):468-477.
DENG H, CHEN C W, SUN A, et al.Construction and characterization of Escherichia coli D-3-phosphoglycerate dehydrogenase mutants with feedback-inhibition relief[J].Chinese Journal of Biotechnology, 2016, 32(4):468-477.
[20] SINGH R K, RAJ I, PUJARI R, et al.Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine[J].The FEBS Journal, 2014, 281(24):5498-5512.
[21] 周翠燕, 俞敏达, 李文奇.三种测定蛋白质热稳定性方法的比较[J].分析测试技术与仪器, 2021, 27(4):252-259.
ZHOU C Y, YU M D, LI W Q.Comparation of three measuring methods for thermodynamic stability of protein[J].Analysis and Testing Technology and Instruments, 2021, 27(4):252-259.