研究报告

aprN的N端编码序列改造促进纳豆激酶的高效表达

  • 黄茜琳 ,
  • 黄俊宝 ,
  • 高旭丽 ,
  • 罗雅妮 ,
  • 陶伟 ,
  • 郭明雨 ,
  • 刘永圆 ,
  • 吴超 ,
  • 吴晶 ,
  • 刘艳
展开
  • (安徽工程大学 生物与食品工程学院, 安徽 芜湖, 241000)
第一作者:硕士研究生(刘艳教授为通信作者,E-mail:liuyan@ahpu.edu.cn)

收稿日期: 2024-01-21

  修回日期: 2024-03-28

  网络出版日期: 2025-02-21

基金资助

国家自然科学基金项目(32372295);安徽省高校杰出青年科研项目(2023AH020013);安徽省大学生创新创业计划项目(202310363254)

Modification of N-terminal coding sequence of aprN promotes efficient expression of nattokinase

  • HUANG Xilin ,
  • HUANG Junbao ,
  • GAO Xuli ,
  • LUO Yani ,
  • TAO Wei ,
  • GUO Mingyu ,
  • LIU Yongyuan ,
  • WU Chao ,
  • WU Jing ,
  • LIU Yan
Expand
  • (College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China)

Received date: 2024-01-21

  Revised date: 2024-03-28

  Online published: 2025-02-21

摘要

为提高纳豆激酶的表达量,在不改变编码纳豆激酶的氨基酸序列前提下,将aprN基因的N端编码序列(N-terminal coding sequences,NCSs)进行同义突变,构建包含突变序列的pHY-P43质粒,经转化和测序分别构建4株突变菌株NK1、NK2、NK3和NK4,纤维蛋白板检测纳豆激酶活力,利用SDS-PAGE验证,通过响应面优化发酵条件。结果表明,NK1、NK2、NK3、NK4菌株纳豆激酶活力分别为94.8、101.9、124.2、69.4 IU/mL。其中NK3菌株的酶活力最高,较原始菌株提高了50%;NK4菌株酶活力最低仅为原始菌株酶活力的83%。SDS-PAGE显示重组酶生产纳豆激酶的分子质量约为28 kDa,与理论的分子质量27 kDa相符。通过响应面分析得出优化后重组菌株NK3产纳豆激酶的最佳条件为:初始pH 7.56、发酵温度35 ℃、发酵时间38 h。纳豆激酶酶活力138.1 IU/mL,较未优化前提高11.2%。该研究为提高纳豆激酶活力提供一种新的策略,且不改变纳豆激酶本身的性质。

本文引用格式

黄茜琳 , 黄俊宝 , 高旭丽 , 罗雅妮 , 陶伟 , 郭明雨 , 刘永圆 , 吴超 , 吴晶 , 刘艳 . aprN的N端编码序列改造促进纳豆激酶的高效表达[J]. 食品与发酵工业, 2025 , 51(3) : 113 -119 . DOI: 10.13995/j.cnki.11-1802/ts.038653

Abstract

In order to improve the expression level of nattokinase, the N-terminal coding sequences (NCSs) of the aprN were synonymously mutated without changing the amino acid sequence encoding nattokinase.Four mutant strains, NK1, NK2, NK3 and NK4, were constructed by transforming recombinant pHY-P43 plasmid which containing the mutated sequences into Bacillus subtilis.The enzyme activity of nattokinase was detected by fibrin plate.The expression of recombinant protein was verified by SDS-PAGE.The fermentation conditions of mutant strains were optimized by response surface.The results showed that the nattokinase activity of NK1, NK2, NK3 and NK4 strains were 94.8 IU/mL, 101.9 IU/mL, 124.2 IU/mL and 69.4 IU/mL, respectively.The NK3 strain had the highest enzyme activity, which was 50% higher than that of the original strain.The NK3 strain had the lowest enzyme activity, which was 83% of that of the original strain.The results of SDS-PAGE showed that the molecular weight of recombinant nattokinase was about 28 kDa, which was consistent with the theoretical molecular weight of 27 kDa.Response surface analysis showed that initial pH 7.56, fermentation temperature 35 ℃, and fermentation time 38 h were the optimal conditions for production of nattokinase in NK3 strain.The enzyme activity of nattokinase was 138.1 IU/mL, which was 11.2% higher than before the optimization.This study provides a new strategy to enhance the activity of nattokinase without altering the properties of nattokinase itself.

参考文献

[1] SHENG Y N, YANG J N, WANG C Y, et al.Microbial nattokinase:From synthesis to potential application[J].Food & Function, 2023, 14(6):2568-2585.
[2] 满丽莉, 向殿军.枯草芽孢杆菌MX-6产纳豆激酶特性分析[J].食品与发酵工业, 2019, 45(6):42-47.
MAN L L, XIANG D J.Partial characteristics of nattokinase produced by Bacillus subtilis MX-6[J].Food and Fermentation Industries, 2019, 45(6):42-47.
[3] MODI A, RAVAL I, DOSHI P, et al.Heterologous expression of recombinant nattokinase in Escherichia coli BL21(DE3) and media optimization for overproduction of nattokinase using RSM[J].Protein Expression and Purification, 2023, 203:106198.
[4] CAI D, WEI X, QIU Y, et al.High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase[J].Journal of Applied Microbiology, 2016, 121(3):704-712.
[5] 冯浩, 余凤云, 单凤娟, 等.构建食品级表达纳豆激酶的乳酸乳球菌重组菌株[J].食品科学, 2012, 33(21):208-212.
FENG H, YU F Y, SHAN F J, et al.Construction of a strain of recombinant Lactococcus lactis expressing food-grade nattokinase[J].Food Science, 2012, 33(21):208-212.
[6] 李怡欣, 付刚, 马媛媛, 等.碱性蛋白酶SubC在枯草芽孢杆菌中的高效异源表达[J].微生物学通报, 2021, 48(10):3409-3420.
LI Y X, FU G, MA Y Y, et al.Efficient heterologous expression of alkaline protease SubC in Bacillus subtilis[J].Microbiology China, 2021, 48(10):3409-3420.
[7] 赵福永, 严寒, 任广旭, 等.重组纳豆激酶的研究进展[J].中国食物与营养, 2019, 25(7):41-45.
ZHAO F Y, YAN H, REN G X, et al.Research advancement on recombinant nattokinase[J].Food and Nutrition in China, 2019, 25(7):41-45.
[8] 邓卉, 余丹, 邹成义, 等.大肠杆菌多酚氧化酶的分子克隆及异源高效表达[J].中国饲料, 2024(5):26-31.
DENG H, YU D, ZOU C Y, et al.Molecular cloning of the polyphenol oxidase from Escherichia coli and its heterologous high-efficiency expression[J].China Feed, 2024(5):26-31.
[9] 赵越, 王新秀, 吴思, 等.KlacPNP基因密码子优化及在枯草芽胞杆菌中的高效表达[J].食品与发酵工业, 2023, 49(19):53-59.
ZHAO Y, WANG X X, WU S, et al.Codon optimization and efficient expression of KlacPNP gene in Bacillus subtilis[J].Food and Fermentation Industries, 2023, 49(19):53-59.
[10] 陈永安, 袁清焱, 李承, 等.快速筛选高效表达重组蛋白毕赤酵母菌株新方法的建立及评价[J].生物工程学报, 2021, 37(3):939-949.
CHEN Y A, YUAN Q Y, LI C, et al.Development and evaluation of a novel method for rapid screening of Pichia pastoris strains capable of efficiently expressing recombinant proteins[J].Chinese Journal of Biotechnology, 2021, 37(3):939-949.
[11] DUAN X G, WU J.Enhancing the secretion efficiency and thermostability of a Bacillus deramificans pullulanase mutant (D437H/D503Y) by N-terminal domain truncation[J].Applied and Environmental Microbiology, 2015, 81(6):1926-1931.
[12] WEBER M, BURGOS R, YUS E, et al.Impact of C-terminal amino acid composition on protein expression in bacteria[J].Molecular Systems Biology, 2020, 16(5):e9208.
[13] XU K D, TONG Y, LI Y, et al.Rational design of the N-terminal coding sequence for regulating enzyme expression in Bacillus subtilis[J].ACS Synthetic Biology, 2021, 10(2):265-276.
[14] CHEONG D E, KO K C, HAN Y, et al.Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5′ coding region[J].Biotechnology and Bioengineering, 2015, 112(4):822-826.
[15] QUAX T E F, CLAASSENS N J, SÖLL D, et al.Codon bias as a means to fine-tune gene expression[J].Molecular Cell, 2015, 59(2):149-161.
[16] ZHENG Z L, YE M Q, ZUO Z Y, et al.Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation[J].Biochemical Journal, 2006, 395(3):509-515.
[17] 柳玫琪, 赵微, 秦雅丽, 等.植物乳杆菌p-8乙酰乙酸脱羧酶的原核表达及活性分析[J].内蒙古农业大学学报(自然科学版), 2022, 43(1):40-47.
LIU M Q, ZHAO W, QIN Y L, et al.Prokaryotic expression and activity analysis of Lactobacillus plantarum P-8 acetoacetate decarboxylase[J].Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2022, 43(1):40-47.
[18] GUPTA S K, GHOSH T C.Gene expressivity is the main factor in dictating the Codon usage variation among the genes in Pseudomonas aeruginosa[J].Gene, 2001, 273(1):63-70.
[19] WU J, LI W, ZHAO S G, et al.Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis[J].Microbial Cell Factories, 2021, 20(1):113.
[20] ZHOU M J, WU J, HU L X, et al.Enhanced vitamin K2 production by engineered Bacillus subtilis during leakage fermentation[J].World Journal of Microbiology & Biotechnology, 2023, 39(8):224.
[21] 王镭. 纳豆激酶的制备与分离纯化研究进展[J].黑龙江科学, 2019, 10(8):8-10;17.
WANG L.Progress in preparation, isolation and purification of nattokinase[J].Heilongjiang Science, 2019, 10(8):8-10;17.
文章导航

/