[1] PEKKALA S.Fecal metagenomics and metabolomics identifying microbial signatures in non-alcoholic fatty liver disease[J].International Journal of Molecular Sciences, 2023, 24(5):4855.
[2] PEREIRA K, SALSAMENDI J, CASILLAS J.The global nonalcoholic fatty liver disease epidemic:What a radiologist needs to know[J].Journal of Clinical Imaging Science, 2015, 5:32.
[3] KLEINER D E, MAKHLOUF H R.Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children[J].Clinics in Liver Disease, 2016, 20(2):293-312.
[4] ZHANG X, JI X T, WANG Q, et al.New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J].Protein & Cell, 2018, 9(2):164-177.
[5] WONG V W S, ADAMS L A, DE LÉDINGHEN V, et al.Noninvasive biomarkers in NAFLD and NASH-current progress and future promise[J].Nature Reviews Gastroenterology & Hepatology, 2018, 15(8):461-478.
[6] MAKRI E, GOULAS A, POLYZOS S A.Epidemiology, pathogenesis, diagnosis and emerging treatment of nonalcoholic fatty liver disease[J].Archives of Medical Research, 2021, 52(1):25-37.
[7] BUZZETTI E, PINZANI M, TSOCHATZIS E A.The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J].Metabolism-Clinical and Experimental, 2016, 65(8):1038-1048.
[8] PEZZINO S, SOFIA M, FALETRA G, et al.Gut-liver axis and non-alcoholic fatty liver disease:A vicious circle of dysfunctions orchestrated by the gut microbiome[J].Biology, 2022, 11(11):1622.
[9] NASSIR F.NAFLD:Mechanisms, treatments, and biomarkers[J].Biomolecules, 2022, 12(6):824.
[10] MASOODI M, GASTALDELLI A, HYÖTYLÄINEN T, et al.Metabolomics and lipidomics in NAFLD:Biomarkers and non-invasive diagnostic tests[J].Nature Reviews Gastroenterology & Hepatology, 2021, 18(12):835-856.
[11] AZIZ T, HUSSAIN N, HAMEED Z, et al.Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases:Recent challenges and future recommendations[J].Gut Microbes, 2024, 16(1):2297864.
[12] DAVID L A, MAURICE C F, CARMODY R N, et al.Diet rapidly and reproducibly alters the human gut microbiome[J].Nature, 2014, 505(7484):559-563.
[13] HYDES T, ALAM U, CUTHBERTSON D J.The impact of macronutrient intake on non-alcoholic fatty liver disease (NAFLD):Too much fat, too much carbohydrate, or just too many calories?[J].Frontiers in Nutrition, 2021, 8:640557.
[14] FEDCHUK L, NASCIMBENI F, PAIS R, et al.Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease[J].Alimentary Pharmacology & Therapeutics, 2014, 40(10):1209-1222.
[15] WANG T Y, WANG R F, BU Z Y, et al.Association of metabolic dysfunction-associated fatty liver disease with kidney disease[J].Nature Reviews Nephrology, 2022, 18(4):259-268.
[16] FAZEL Y, KOENIG A B, SAYINER M, et al.Epidemiology and natural history of non-alcoholic fatty liver disease[J].Metabolism-Clinical and Experimental, 2016, 65(8):1017-1025.
[17] FANG Y L, CHEN H, WANG C L, et al.Pathogenesis of non-alcoholic fatty liver disease in children and adolescence:From “two hit theory” to “multiple hit model”[J].World Journal of Gastroenterology, 2018, 24(27):2974-2983.
[18] 潘芳, 朱玲玲, 王宏星.不同饮食结构对围绝经期妇女人体成分和糖代谢的影响[J].广西医学, 2021, 43(6):690-694.
PAN F, ZHU L L, WANG H X.Effects of different dietary patterns on body composition and glycemic metabolism in perimenopausal women[J].Guangxi Medical Journal, 2021, 43(6):690-694.
[19] BOLGER A M, LOHSE M, USADEL B.Trimmomatic:A flexible trimmer for Illumina sequence data[J].Bioinformatics, 2014, 30(15):2114-2120.
[20] QUINLAN A R, HALL I M.BEDTools:A flexible suite of utilities for comparing genomic features[J].Bioinformatics, 2010, 26(6):841-842.
[21] BEGHINI F, MCIVER L J, BLANCO-MÍGUEZ A, et al.Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3[J].Elife, 2021, 10:e65088.
[22] SEGATA N, WALDRON L, BALLARINI A, et al.Metagenomic microbial community profiling using unique clade-specific marker genes[J].Nature Methods, 2012, 9(8):811-814.
[23] 覃一书, 保欣晨, 汪洁, 等.不同饮食习惯下镉摄入对肠道菌群结构的影响[J].中国环境科学, 2021, 41(8):3896-3905.
QIN Y S, BAO X C, WANG J, et al.Effect of cadmium intake on the structure of gut microbiota under different dietary habits[J].China Environmental Science, 2021, 41(8):3896-3905
[24] ZHANG Y L, HU J L, TAN H Z, et al.Akkermansia muciniphila, an important link between dietary fiber and host health[J].Current Opinion in Food Science, 2022, 47.
[25] DOUGAL K, DE LA FUENTE G, HARRIS P A, et al.Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing[J].PloS One, 2014, 9(2):e87424.
[26] WAN Y, WANG F L, YUAN J H, et al.Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors:A 6-month randomised controlled-feeding trial[J].Gut, 2019, 68(8):1417-1429.
[27] 魏慧, 段丽萍.膳食对肠道菌群结构、代谢和功能影响的研究进展[J].中华消化杂志, 2017, 37(9):642-644.
WEI H, DUAN L P.Research progress on the effect of diet on the structure, metabolism and function of intestinal flora[J].Chinese Journal of Digestion, 2017, 37(9):642-644.
[28] WANG C, YANG Y T, CHEN J Y, et al.Berberine protects against high-energy and low-protein diet-induced hepatic steatosis:Modulation of gut microbiota and bile acid metabolism in laying hens[J].International Journal of Molecular Sciences, 2023, 24(24):17304.
[29] CHIANG J Y L, FERRELL J M.Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J].American Journal of Physiology-Gastrointestinal and Liver Physiology, 2020, 318(3):G554-G573.
[30] PIERCE A A, PICKENS M K, SIAO K, et al.Differential hepatotoxicity of dietary and DNL-derived palmitate in the methionine-choline-deficient model of steatohepatitis[J].BMC Gastroenterology, 2015, 15:72.
[31] MIQUEL S, MARTÍN R, ROSSI O, et al.Faecalibacterium prausnitzii and human intestinal health[J].Current Opinion in Microbiology, 2013, 16(3):255-261.
[32] SAYIN S I, WAHLSTRÖM A, FELIN J, et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J].Cell Metabolism, 2013, 17(2):225-235.
[33] FROST G, SLEETH M L, SAHURI-ARISOYLU M, et al.The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J].Nature Communications, 2014, 5:3611.
[34] LOUIS P, FLINT H J.Formation of propionate and butyrate by the human colonic microbiota[J].Environmental Microbiology, 2017, 19(1):29-41.