研究报告

重组大肠杆菌透性化处理高效合成1,4-丁二胺

  • 丁博 ,
  • 刘伟 ,
  • 毛银 ,
  • 李国辉 ,
  • 邓禹
展开
  • 1(江南大学 粮食发酵与食品生物制造国家工程研究中心,江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
    3(淮北矿业绿色化工新材料研究院有限公司,安徽 淮北,235000)
第一作者:硕士研究生(李国辉副教授和邓禹教授为通信作者,E-mail:guohuili@jiangnan.edu.cn;dengyu@jiangnan.edu.cn)

收稿日期: 2024-02-01

  修回日期: 2024-04-23

  网络出版日期: 2025-03-28

基金资助

国家重点研发计划项目(2021YFC2100700);国家自然科学基金项目(22008088,21877053);中国博士后科学基金资助项目(2020M681485,2021T140277);江苏省博士后科研资助计划项目(2020Z012)

Efficient synthesis of putrescine by permeabilization treatment of recombinant Escherichia coli

  • DING Bo ,
  • LIU Wei ,
  • MAO Yin ,
  • LI Guohui ,
  • DENG Yu
Expand
  • 1(National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    3(Huaibei Mining Green Chemical New Materials Research Institute Co. Ltd., Huaibei 235000, China)

Received date: 2024-02-01

  Revised date: 2024-04-23

  Online published: 2025-03-28

摘要

1,4-丁二胺主要用于耐高温尼龙PA46的制备,然而其化学合成主要利用剧毒的氢氰酸和丙烯腈为原料,技术壁垒较高。针对丁二胺发酵法合成产量和产率较低的问题,该研究基于精氨酸到丁二胺的生物催化路线,通过透性化细胞处理提升物质的传输效率,并结合工程菌株培养和催化过程强化来提升丁二胺的合成能力。结果表明,乙醇透性化处理可显著解除传质限制,相比对照丁二胺产量提升50%以上达到14.92 g/L,在此基础上,确定了菌体的最优培养条件和最优催化工艺,在该条件下进行催化,丁二胺产量达到已有报道的最高水平88.67 g/L,摩尔转化率为0.81 mol/mol,生产效率为2.46 g/(L·h),为后续丁二胺的生物法开发利用奠定基础。

本文引用格式

丁博 , 刘伟 , 毛银 , 李国辉 , 邓禹 . 重组大肠杆菌透性化处理高效合成1,4-丁二胺[J]. 食品与发酵工业, 2025 , 51(5) : 15 -21 . DOI: 10.13995/j.cnki.11-1802/ts.038803

Abstract

Putrescine is mainly used in the preparation of high-temperature-resistant nylon PA46.Currently, it is mainly monopolized due to the high technical barriers derived from using highly toxic hydrocyanic acid and acrylonitrile as raw materials.To address the low yield and productivity in the biological synthesis of putrescine, this research improved the substance transfer efficiency via permeabilization of cells based on a biocatalytic route from arginine to putrescine, and the synthesis ability was enhanced through engineering strain cultivation and catalytic process enhancement.The results showed that the ethanol permeabilization treatment could significantly enhance the mass transfer limitation, and the putrescine yield was enhanced by more than 50% compared with the control, reaching 14.92 g/L.Meanwhile, the optimal cultivation conditions and the catalytic process were determined, and the putrescine yield reached the highest reported level of 88.67 g/L,with a molar conversion rate 0.81 mol/mol and a production efficiency of 2.46 g/(L·h), laying the foundation for the subsequent development of biobased putrescine.

参考文献

[1] YAMANOBE T, KURIHARA Y, UEHARA H, et al.Structure and characterization of nylon 46[J].Journal of Molecular Structure, 2007, 829(1-3):80-87.
[2] 吴全德, 郝源增.新型尼龙46工程塑料的性能及应用[J].工程塑料应用, 2000, 28(11):31-33.
WU Q D, HAO Y Z.Property and application of new engineering plastics nylon 46[J].Engineering Plastics Application, 2000, 28(11):31-33.
[3] 赵晓. 高分子量聚己二酰丁二胺的合成工艺及性能研究[D].郑州:郑州大学, 2014.
ZHAO X.Study on synthesis technology and properties of high molecular weight poly(tetramethylene adipamide)[D].Zhengzhou:Zhengzhou University, 2014.
[4] CHAE T U, AHN J H, KO Y S, et al.Metabolic engineering for the production of dicarboxylic acids and diamines[J].Metabolic Engineering, 2020, 58:2-16.
[5] QIAN Z G, XIA X X, LEE S Y.Metabolic engineering of Escherichia coli for the production of putrescine:A four carbon diamine[J].Biotechnology and Bioengineering, 2009, 104(4):651-662.
[6] NGUYEN A Q D, SCHNEIDER J, REDDY G K, et al.Fermentative production of the diamine putrescine:System metabolic engineering of Corynebacterium glutamicum[J].Metabolites, 2015, 5(2):211-231.
[7] LI Z, SHEN Y P, JIANG X L, et al.Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production[J].Journal of Industrial Microbiology & Biotechnology, 2018, 45(2):123-139.
[8] THONGBHUBATE K, IRIE K, SAKAI Y M, et al.Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12[J].AMB Express, 2021, 11(1):168.
[9] LI G H, HUANG D X, WANG L, et al.Highly efficient whole-cell biosynthesis of putrescine by recombinant Escherichia coli[J].Biochemical Engineering Journal, 2021, 166:107859.
[10] HUI H J, BAI Y J, FAN T P, et al.Biosynthesis of putrescine from L-arginine using engineered Escherichia coli whole cells[J].Catalysts, 2020, 10(9):947.
[11] 随树珍. 生物转化法合成1,4-丁二胺大肠杆菌工程菌的构建[D].天津:天津科技大学, 2016.
SUI S Z.Construction of recombinant Escherichia coli for production of 1,4-blutyldiamine via biotransformation[D].Tianjin:Tianjin University of Science & Technology, 2016.
[12] YANG S C, TING W W, NG I S.Effective whole cell biotransformation of arginine to a four-carbon diamine putrescine using engineered Escherichia coli[J].Biochemical Engineering Journal, 2022, 185:108502.
[13] 王莉. 大肠杆菌生物法合成二元胺的机理研究[D].无锡:江南大学, 2023.
WANG L.Biosynthesis of diamines in Escherichia coli[D].Wuxi:Jiangnan University, 2023.
[14] DE CARVALHO C C C R.Enzymatic and whole cell catalysis:Finding new strategies for old processes[J].Biotechnology Advances, 2011, 29(1):75-83.
[15] CHEN R R.Permeability issues in whole-cell bioprocesses and cellular membrane engineering[J].Applied Microbiology and Biotechnology, 2007, 74(4):730-738.
[16] 王艺颖, 董钰漫, 尹伟, 等.全细胞生物催化过程强化的研究进展[J].化学通报, 2020, 83(10):875-882.
WANG Y Y, DONG Y M, YIN W, et al.Progress in the process intensification of whole-cell biocatalysis[J].Chemistry, 2020, 83(10):875-882.
[17] 刘宇轩. 基于赖氨酸脱羧酶的高纯度戊二胺的合成工艺开发[D].天津:天津大学, 2020.
LIU Y X.Development of a process for the production of high-purified cadaverine based on lysine decarboxylase[D].Tianjin:Tianjin University, 2020.
[18] 王越, 李江华, 堵国成, 等.L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化[J].中国生物工程杂志, 2019, 39(3):56-64.
WANG Y, LI J H, DU G C, et al.Molecular modification of L-amino acid deaminase and optimization of α-ketoglutaric acid production by whole-cell biocatalysis[J].China Biotechnology, 2019, 39(3):56-64.
[19] SUZUKI H, THONGBHUBATE K, MURAOKA M, et al.Agmatine production by Escherichia coli cells expressing SpeA on the extracellular surface[J].Enzyme and Microbial Technology, 2023, 162:110139.
[20] MATURANA P, ORELLANA M S, HERRERA S M, et al.Crystal structure of Escherichia coli agmatinase:Catalytic mechanism and residues relevant for substrate specificity[J].International Journal of Molecular Sciences, 2021, 22(9):4769.
文章导航

/