研究报告

黑麦挂面微波间歇干燥特性及动力学模型研究

  • 程丽丽 ,
  • 张媛媛 ,
  • 唐雪燕 ,
  • 王娇 ,
  • 张仲欣
展开
  • 1(漯河食品工程职业大学 食品与生物工程学院,河南 漯河,462300)
    2(河南科技大学 食品与生物工程学院,河南 洛阳,471023)
第一作者:硕士,副教授(本文通信作者,E-mail:84908195@qq.com)

收稿日期: 2024-08-06

  修回日期: 2024-10-23

  网络出版日期: 2025-03-28

基金资助

河南省重点研发与推广专项(科技攻关)(232102110142)

Studies on microwave intermittent drying characteristics and kinetic model of rye noodles

  • CHENG Lili ,
  • ZHANG Yuanyuan ,
  • TANG Xueyan ,
  • WANG Jiao ,
  • ZHANG Zhongxin
Expand
  • 1(School of Food and Biological Engineering, Luohe Food Engineering Vocational University, Luohe 462300, China)
    2(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China)

Received date: 2024-08-06

  Revised date: 2024-10-23

  Online published: 2025-03-28

摘要

以黑麦挂面为对象,采用微波间歇干燥方法,研究不同微波功率、装载量和面条厚度对黑麦挂面干燥特性和有效水分扩散系数的影响,通过SPSS软件对5种干燥动力学模型进行拟合,得到黑麦挂面间歇微波干燥动力学模型,并对微波干燥黑麦挂面进行品质评价。结果表明,黑麦挂面微波间歇干燥主要表现为降速干燥,微波功率越大、装载量越小、挂面厚度越薄,干燥速度越快,干燥用时越短;干燥中有效水分扩散系数为1.180 39×10-11~2.967 02×10-11m2/s,并随着微波功率和挂面厚度的增加而增大,随着装载量的增加而减小;通过模型拟合发现,Logarithmic模型是黑麦挂面间歇微波干燥的最佳模型,R2最大,χ2和均方根误差最小,可有效描述黑麦挂面微波干燥时水分的变化过程;微波干燥黑麦挂面色泽较好,黑红发亮,抗弯曲特性高,熟断条率为0,蒸煮损失率为7.70%,质构特性良好,具有商品价值。该研究为微波技术在挂面生产的应用提供理论依据。

本文引用格式

程丽丽 , 张媛媛 , 唐雪燕 , 王娇 , 张仲欣 . 黑麦挂面微波间歇干燥特性及动力学模型研究[J]. 食品与发酵工业, 2025 , 51(5) : 241 -247 . DOI: 10.13995/j.cnki.11-1802/ts.040668

Abstract

Based on the rye noodles, the effects of different microwave power, loading capacity, and noodle thickness on drying characteristics and the effective moisture diffusion coefficient of rye noodles were studied by using the microwave intermittent drying method.The intermittent microwave drying kinetics model of rye noodles was obtained by fitting five drying kinetics models with SPSS software.The quality evaluation of microwave-dried rye noodles was carried out.Results showed that the microwave intermittent drying of rye noodles was mainly reduced speed drying.The drying speed was faster and the drying time was shorter when the microwave power was higher, the loading capacity was smaller and the thickness was thinner.During the drying process, the effective moisture diffusion coefficient ranged between 1.180 39×10-11 and 2.967 02×10-11m2/s, and increased with the increase of microwave power and wall thickness, but decreased with the increase of loading capacity.Through model fitting, the Logarithmic model was the best model for intermittent microwave drying of rye noodles, with the largest R2 and the smallest χ2 and RMSE, which could effectively describe the change of water content during microwave drying of rye noodles.The microwave-dried rye noodles had a good black-red shiny color, high bending resistance, 0 cooked broken rate, 7.70% of cooking loss rate, good texture characteristics, and commercial value.This study provides a theoretical basis for the application of microwave technology in noodle production.

参考文献

[1] 张慧. 黑麦的营养特性及黑麦面包的制作研究[D].郑州:河南工业大学, 2014.
ZHANG H.Rye nutrition characteristics and the research of the rye bread[D].Zhengzhou:Henan University of Technology, 2014.
[2] 周明, 黎冬明, 郑国栋, 等.黑麦面条工艺优化及质构特性的研究[J].食品科技, 2016, 41(1):121-124.
ZHOU M, LI D M, ZHENG G D, et al.Processing optimization and texture properties of noodle with rye[J].Food Science and Technology, 2016, 41(1):121-124.
[3] WEI Z Z, DUAN Z H, TANG X X, et al.Effects of microwave drying on nutrient component and antioxidant activity of persimmon slices[J].Journal of Food Measurement and Characterization, 2022, 16(2):1744-1753.
[4] 唐小闲, 汤泉, 段振华, 等.微波间歇干燥与热风干燥对马蹄淀粉特性的影响[J].食品研究与开发, 2018, 39(7):71-75.
TANG X X, TANG Q, DUAN Z H, et al.Studies on the characteristics of intermittent microwave drying and hot air drying of water chestnut starch[J].Food Research and Development, 2018, 39(7):71-75.
[5] 覃焱婷, 段振华, 韦珍珍, 等.微波功率对月柿果片微波间歇干燥中水分迁移及品质的影响[J].食品与机械, 2021, 37(10):1-5; 78.
QIN Y T, DUAN Z H, WEI Z Z, et al.Effects of microwave power on moisture migration and quality of persimmon slices during microwave intermittent drying[J].Food & Machinery, 2021, 37(10):1-5; 78.
[6] 徐一凡, 汪卿卿, 吴绍珍, 等.微波间歇干燥对山核桃干燥特性及品质影响[J].浙江农业科学, 2022, 63(9):2107-2112.
XU Y F, WANG Q Q, WU S Z, et al.Effect of microwave intermittent drying on drying characteristics and quality of carya cathayensis[J].Zhejiang Agricultural Sciences, 2022, 63(9):2107-2112.
[7] 周思云, 段振华, 覃焱婷, 等.芋圆的微波间歇干燥工艺研究[J].食品研究与开发, 2021, 42(24):59-67.
ZHOU S Y, DUAN Z H, QIN Y T, et al.Study on microwave intermittent drying technology of taro rounds[J].Food Research and Development, 2021, 42(24):59-67.
[8] 张黎骅, 武莉峰, 党鑫凯, 等.鲜切高山野山药片微波间歇干燥特性研究[J].食品与机械, 2017, 33(1):39-44; 92.
ZHANG L H, WU L F, DANG X K, et al.Drying characteristics of intermittent microwave heated fresh-cut high mountain yam slice[J].Food & Machinery, 2017, 33(1):39-44; 92.
[9] 文静, 代建武, 张黎骅.苹果片微波间歇干燥特性及模型拟合[J].食品与发酵工业, 2019, 45(4):81-88.
WEN J, DAI J W, ZHANG L H.Microwave intermittent drying characteristics and model fitting for apple slices[J].Food and Fermentation Industries, 2019, 45(4):81-88.
[10] 农永红. 鲜姜片微波干燥特性及工艺优化研究[D].昆明:云南师范大学, 2023.
NONG Y H.Study on microwave drying characteristics and process optimization of fresh ginger slices[D].Kunming:Yunnan Normal University, 2023.
[11] 武亮, 张影全, 王振华, 等.挂面干燥特性与模型拟合研究[J].中国食品学报, 2019, 19(8):119-129.
WU L, ZHANG Y Q, WANG Z H, et al.Studies on drying characteristics and modelling of Chinese dried noodle[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(8):119-129.
[12] 肖亚冬, 吴海虹, 田震, 等.香葱叶片微波-热风联合干燥工艺优化及干燥动力学研究[J].农产品加工, 2023(14):6-12.
XIAO Y D, WU H H, TIAN Z, et al.Optimization of microwave combined hot-air drying process and drying dynamics model of chive leaf[J].Farm Products Processing, 2023(14):6-12.
[13] FALADE K O, SOLADEMI O J.Modelling of air drying of fresh and blanched sweet potato slices[J].International Journal of Food Science & Technology, 2010, 45(2):278-288.
[14] 王杰, 王晓建, 郑学玲.前、中、后路小麦粉挂面制作品质差异性分析[J].食品与发酵工业, 2023, 49(21):198-205.
WANG J, WANG X J, ZHENG X L.Analysis on quality difference of dried noodles made from front, middle, and rear road wheat flour[J].Food and Fermentation Industries, 2023, 49(21):198-205.
[15] 何瑾璇, 刘翀, 郑学玲.中高温干燥对发酵挂面品质的影响[J].现代食品科技, 2022, 38(10):227-234.
HE J X, LIU C, ZHENG X L.Effects of medium-high temperature drying on the quality of fermented dried noodles[J].Modern Food Science and Technology, 2022, 38(10):227-234.
[16] 甘婷, 易萍, 黄敏, 等.芒果微波干燥特性及数学模型研究[J].食品科技, 2024, 49(1):19-26.
GAN T, YI P, HUANG M, et al.Mango microwave drying characteristics and kinetic model analysis[J].Food Science and Technology, 2024, 49(1):19-26.
[17] 宋树杰, 王蒙.熟化紫薯片微波干燥特性及数学模型[J].食品与发酵工业, 2020, 46(2):85-93.
SONG S J, WANG M.Microwave drying characteristics and kinetic model of cooked purple sweet potato slice[J].Food and Fermentation Industries, 2020, 46(2):85-93.
[18] LEE D, SO J D, JUNG H M, et al.Microwave drying characteristics of squash slices[J].Korean Journal of Agricultural Science, 2018, 45(4):847-857.
[19] 武亮. 挂面干燥工艺模型与过程控制研究[D].北京:中国农业科学院, 2016.
WU L.Research on noodles drying model and drying process control[D].Beijing:Chinese Academy of Agricultural Sciences, 2016.
[20] INAZU T, IWASAKI K.Mathematical evaluation of effective moisture diffusivity in fresh Japanese noodles (udon) by regular regime theory[J].Journal of Food Science, 2000, 65(3):440-444.
[21] WAANANEN K M, OKOS M R.Effect of porosity on moisture diffusion during drying of pasta[J].Journal of Food Engineering, 1996, 28(2):121-137.
[22] 吴钊龙, 张小叶, 黄纪民, 等.黄精片间歇微波干燥特性及模型拟合[J].江苏农业科学, 2022, 50(15):156-162.
WU Z L, ZHANG X Y, HUANG J M, et al.Ntermittent microwave drying characteristics and model fitting of polygonatum sibiricum tablets[J].Jiangsu Agricultural Sciences, 2022, 50(15):156-162.
[23] 张梦超. 非油炸方便型马铃薯热干面的品质改良及其干燥特性研究[D].武汉:华中农业大学, 2019.
ZHANG M C.Study on the quality improvement and drying characteristics of non-fried instant potato hot dry noodles[D].Wuhan:Huazhong Agricultural University, 2019.
文章导航

/