Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (1): 152-158    DOI: 10.13995/j.cnki.11-1802/ts.016869
  生产与科研经验 本期目录 | 过刊浏览 | 高级检索 |
NaCl-CaCl2处理对发芽大豆酚类物质富集及抗氧化能力的影响
余茜,马燕,范丹君,龚茹怡,王沛,顾振新,杨润强*
(南京农业大学 食品科技学院,江苏 南京,210095)
Effects of NaCl-CaCl2 treatment on phenolics accumulation and antioxidant capacities of soybean sprouts
YU Qian, MA Yan, FAN Danjun, GONG Ruyi, WANG Pei, GU Zhenxin, YANG Runqiang*
(College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)
下载:  HTML   PDF (1190KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究氯化盐是否在种子萌发过程中对酚类物质的富集发挥作用,采用水培法,研究了外源添加1.5 mmol/L NaCl、6 mmol/L CaCl2和1.5 mmol/L NaCl+6 mmol/L CaCl2处理对大豆芽苗生长指标、总酚含量、酚酸含量及抗氧化能力的影响。结果表明:NaCl和CaCl2单独处理均能促进大豆芽苗的生长,两者联合处理时促进效果更明显;NaCl-CaCl2作用下,大豆芽苗的总酚含量和酚酸含量均大幅增加,DPPH清除能力和ABTS清除能力得到提高。由此可见,NaCl-CaCl2对增强大豆芽苗的酚类物质含量及提高其抗氧化能力具有重要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余茜
马燕
范丹君
龚茹怡
王沛
顾振新
杨润强
关键词:  NaCl-CaCl2  总酚  酚酸  抗氧化能力    
Abstract: In order to investigate whether chloride salt affects phenolics contents during soybean germination, effects of exogenous NaCl (1.5 mmol/L), CaCl2 (6 mmol/L), and NaCl combined CaCl2 (1.5 mmol/L NaCl+6 mmol/L CaCl2) treatments on the sprouts growth index, total phenolics contents, phenolic acids contents, and antioxidant capacity were studied. The results showed that NaCl and CaCl2 treatment alone could promote the soybean sprouts growth, and the effect was more obvious under NaCl-CaCl2 treatment. Simultaneously, the contents of total phenolics and phenolic acids in soybean sprouts increased significantly under NaCl-CaCl2 treatment. DPPH and ABTS radical scavenging activities also improved after NaCl-CaCl2 treatment. This indicated that NaCl-CaCl2 treatment plays an important role in enhancing the contents of phenolics and improving the antioxidant capacities of soybean sprouts.
Key words:  NaCl-CaCl2    total phenolics    phenolic acids    antioxidant capacity
收稿日期:  2018-01-20                出版日期:  2019-01-15      发布日期:  2019-02-01      期的出版日期:  2019-01-15
基金资助: 中央高校科研科研业务费自主创新重点项目(KYZ 201744);国家大学生创新训练项目(201710307058)
作者简介:  本科生(杨润强副教授为通讯作者,E-mail:yangrq@njau.edu.cn)。
引用本文:    
余茜,马燕,范丹君,等. NaCl-CaCl2处理对发芽大豆酚类物质富集及抗氧化能力的影响[J]. 食品与发酵工业, 2019, 45(1): 152-158.
YU Qian,MA Yan,FAN Danjun,et al. Effects of NaCl-CaCl2 treatment on phenolics accumulation and antioxidant capacities of soybean sprouts[J]. Food and Fermentation Industries, 2019, 45(1): 152-158.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.016869  或          http://sf1970.cnif.cn/CN/Y2019/V45/I1/152
[1] TERPINC P, ABRAMOVICˇ H. A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids[J]. Food Chemistry, 2010, 121: 366-371.<br /> [2] PIETTA P, MINOGGIO M, BRAMATI L. Plant polyphenols: structure, occurrence and bioactivity. studies in natural[J]. Products Chemistry, 2003. 28(3): 257-312.<br /> [3] 陈志杰,吴嘉琪,马燕,等. 植物食品原料中酚酸的生物合成与调控及其生物活性研究进展[J]. 食品科学, 2017, 39(7):1-11.<br /> [4] CUEVA C, MORENO-ARRIBAS M V, MART NLVAREZ P J, et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria[J]. Research in Microbiology, 2010, 161(5): 372-382.<br /> [5] WANG L-Y, TANG Y-P, LIU X, et al. Effects of ferulic acid on antioxidant activity in <i>Angelicae sinensis</i> Radix, <i>Chuanxiong rhizoma</i>, and their combination[J]. Chinese Journal of Natural Medicines, 2015, 13(6): 401-408.<br /> [6] WENG C-J, YEN G-C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives[J]. Cancer Treatment Reviews, 2012, 38(1): 76-87.<br /> [7] 代沙. 紫苏叶抗氧化物质提取、含量测定及抗氧化活性研究[D]. 雅安:四川农业大学, 2013: 57-59.<br /> [8] XU L, ZENG Y, LONG G, et al. The Antioxidant activities and their relationship with the relative polyphenols and flavonols contents of several flowers extracts[J]. Chinese Wild Plant Resources, 2005, 24(1): 51-54.<br /> [9] LUO X, WANG Y, LI Q, et al. Accumulating mechanism of γ-aminobutyric acid in soybean (<i>Glycine max</i> L.) during germination[J]. International Journal of Food Science & Technology,2018, 53(1): 106-111.<br /> [10] WANG X, YANG R, JIN X, et al. Effect of supplemental Ca<sup>2+</sup> on yield and quality characteristics of soybean sprouts[J]. Scientia Horticulturae, 2016, 198: 352-362.<br /> [11] KAYEMBE N C, RENSBURG C J V. Germination as a processing technique for soybeans in small-scale farming[J]. South African Journal of Animal Science, 2013, 43(2): 167-173.<br /> [12] HUANG X, CAI W, XU B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (<i>Glycine max</i> L.) and mung bean (<i>Vigna radiata</i> L.) with germination time[J]. Food Chemistry, 2014, 143(2): 268-276.<br /> [13] JIAO C, YANG R, ZHOU Y, et al. Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts[J]. Food Chemistry, 2016, 204: 373-380.<br /> [14] YANG R, FENG L, WANG S, et al. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. Journal of the Science of Food & Agriculture, 2016, 96(6): 2 090-2 096.<br /> [15] SWIGONSKA S, AMAROWICZ R, KR L A, et al. Influence of abiotic stress during soybean germination followed by recovery on the phenolic compounds of radicles and their antioxidant capacity[J]. Acta Societatis Botanicorum Poloniae, 2014, 83(3): 209-218.<br /> [16] CHEN Z, YU L, WANG X, et al. Changes of phenolic profiles and antioxidant activity in canaryseed (<i>Phalaris canariensis</i> L.) during germination[J]. Food Chemistry, 2016, 194: 608-618.<br /> [17] YANG R, HUI Q, ZHANG W, et al. Effects of CaCl<sub>2</sub> on the metabolism of glucosinolates and the formation of isothiocyanates as well as the antioxidant capacity of broccoli sprouts[J]. Journal of Functional Foods, 2016(24): 156-163.<br /> [18] ZAHEDI S M, NABIPOUR M, AZIZI M, et al. Effect of kinds of salt and its different levels on seed germination and growth of basil plant[J]. World Applied Sciences Journal, 2011, 15(7): 1 039-1 045.<br /> [19] 季延海,于平彬,武占会,等. 低浓度NaCl对水培韭菜生长、产量及品质的影响[J]. 中国生态农业学报, 2015, 23(5): 628-633.<br /> [20] 周熠玮,吴冠雄,肖承,等. 低浓度NaCl对荞麦芽苗菜生长和品质的影响[J]. 蔬菜, 2016(7): 6-7.<br /> [21] 周峰,华春. 低浓度NaCl对菠菜生长的效应[J]. 西北农业学报, 2008, 17(6): 127-129.<br /> [22] 李华,贺洪军,朱金英,等. 盐胁迫下氯化钙对黄瓜幼苗生长的影响[J]. 山东农业科学, 2010(8): 46-48.<br /> [23] 戴高兴,彭克勤,皮灿辉. 钙对植物耐盐性的影响[J]. 中国农学通报, 2003, 19(3): 97-101.<br /> [24] VAN H P. Phenolic compounds of cereals and their antioxidant capacity[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(1): 25.<br /> [25] KAFUI KWAMI ADOM, RUI HAI LIU. Antioxidant activity of grains[J]. Journal of Agricultural & Food Chemistry, 2002, 50(21): 6 182-6 187.<br /> [26] KAUKOVIRTA-NORJA A, WILHELNSON A, POUTANEN K. Germination: A means to improve the functionality of oat[J]. Agricultural & Food Science, 2004, 13(1): 100-112.<br /> [27] AMAROWICZ R, WEIDNER S. Content of phenolic acids in rye caryopses determined using DAD-HPLC method[J]. Journal of Food Science, 2001, 19(6): 201-205.<br /> [28] 付晓燕,吴茜,李书艺,等. 燕麦发芽前后酚类物质的组成变化及结构鉴定[J]. 中国农业科学, 2013, 46(17): 3 669-3 679.<br /> [29] OLFA B, HELA M, TARCHOUN I, et al. Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (<i>Origanum majorana</i>, L.) shoots[J]. Journal of the Science of Food & Agriculture, 2013, 93(1): 134-141.<br /> [30] THAMMAPAT P, MEESO N, SIRIAMORNPUN S. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice[J]. Food Chemistry, 2015, 175: 218-224.<br /> [31] LIM J H, PARK K J, KIM B K, et al. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (<i>Fagopyrum esculentum</i> M.) sprout[J]. Food Chemistry, 2012, 135(3): 1 065-1 070.<br /> [32] MARSCHNER H, POSSINGHAM J V. Effect of K<sup>+</sup> and Na<sup>+</sup> on growth of leaf discs of sugar beet and spinach[J]. Zeitschrift Fü Pflanzenphysiologie, 1975, 75(1): 6-16.<br /> [33] HEPLER P K, WINSHIP L J. Calcium at the cell wall-cytoplast interface[J]. Journal of Integrative Plant Biology, 2010. 52(2): 147-160.<br /> [34] HEPLER P K. Calcium: a central regulator of plant growth and development[J]. Plant Cell, 2005, 17(8): 2 142.<br /> [35] CASTANˇEDA P, P REZ L M. Calcium ions promote the response of Citrus limon against fungal elicitors or wounding[J]. Phytochemistry, 1996, 42(3): 595-598.<br /> [36] 关军锋,李广敏. 钙在植物乙烯生成及信号传递中的生理作用[J]. 植物学报, 2000, 17(5): 413-418.<br /> [37] 刘金福,李晓雁,孟蕊. 苦荞发芽过程中促进黄酮合成的因素初探[J]. 食品工业科技, 2006(10): 106-108.
[1] 郭鹏妹, 秦艳, 赵希娟, 焦必宁. 金柑果实主要次生代谢产物含量及差异分析[J]. 食品与发酵工业, 2021, 47(9): 32-41.
[2] 刘晓晨, 杨光, 杨波, 周盛敏. 光照萌发对亚麻籽油中脂质伴随物含量的影响[J]. 食品与发酵工业, 2021, 47(9): 208-214.
[3] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[4] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[5] 耿嘉钰, 程焕, 张惠玲. 枸杞酒酿造过程中的酚酸降解规律[J]. 食品与发酵工业, 2021, 47(5): 79-85.
[6] 周明, 朱晓娟, 尧梅香, 卢剑青, 陈卡卡, 朱凤妮, 陈金印, 沈勇根. ‘修水化红’甜橙成熟过程中黄酮含量与相关酶活性及抗氧化能力的关系[J]. 食品与发酵工业, 2021, 47(4): 60-67.
[7] 戴亚峰, 王东慧, 卿鹏程, 吴浩, 纵瑞叶, 马少帅, 郭晓晖, 王增利. 霍山石斛花的热风干燥特性、品质及其护色应用研究[J]. 食品与发酵工业, 2021, 47(1): 193-197.
[8] 鲍诗晗, 李诗雯, 何玉英, 李佳琪, 王家琪, 兰天, 孙翔宇, 马婷婷. 烹饪方式对胡萝卜感官品质及营养素含量的影响[J]. 食品与发酵工业, 2020, 46(8): 149-156.
[9] 赵雪平, 郑海武, 雷蕾, 李婷, 张美枝, 李正英. 本土酿酒酵母发酵梅鹿辄干红动态变化研究[J]. 食品与发酵工业, 2020, 46(8): 105-110.
[10] 王琳, 赵裴, 刘洋, 刘杨洁, 韩富亮. 干化处理对霞多丽葡萄酒质量的影响[J]. 食品与发酵工业, 2020, 46(7): 83-88.
[11] 赵治巧, 曾莉, 万玉军, 王刚, 唐自钟, 布同良, 陈惠, 罗丽娟. 酵母菌-植物乳杆菌复合发酵菠萝酵素生物活性的初步研究[J]. 食品与发酵工业, 2020, 46(7): 110-115.
[12] 孔燕, 杨蕊羽, 张明慧, 付云云, 廖丽, 姜林君, 陈安均. 酵母菌株及陈酿时间对桑葚酒主要理化指标和抗氧化能力的影响[J]. 食品与发酵工业, 2020, 46(6): 67-72.
[13] 刘孝平, 刘路, 鲁炫池, 段昕梅, 张玲, 陈安均. 不同高压均质条件对罗望子浊汁稳定性及抗氧化活性的影响[J]. 食品与发酵工业, 2020, 46(4): 125-130.
[14] 冯雨, 贺明阳, 王晶, 王日葵, 傅云梅, 洪敏. 贮藏温度对‘Tarocco’血橙花色苷积累及抗氧化活性的影响[J]. 食品与发酵工业, 2020, 46(4): 211-218.
[15] 李欣宇, 孙雨露, 徐岩, 张荣珍, 唐柯. 不同陈酿容器及陈酿时间对黑果腺肋花楸(Aronia melanocarpa (Michx.) Elliott)酒单体酚及抗氧化性的影响[J]. 食品与发酵工业, 2020, 46(23): 14-20.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn