Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (1): 121-127    DOI: 10.13995/j.cnki.11-1802/ts.017077
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
萝卜硫素-玉米醇溶蛋白纳米水分散体制备及性质
田倚凡1, 2,陈芳3,谭小路1,赵国华1,叶发银1, 2*
1(西南大学 食品科学学院,重庆,400715)
2(食品科学与工程国家级实验教学示范中心(西南大学),重庆,400715)
3(重庆工商大学 环境与资源学院,重庆,400067)
Preparation and physicochemical properties of sulforaphane- encapsulated zein aqueous nano-dispersions
TIAN Yifan1, 2, CHEN Fang3, TAN Xiaolu1, ZHAO Guohua1, YE Fayin1, 2*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(National Demonstration Center for Experimental Food Science and Technology Education (Southwest University), Chongqing 400715, China)
3(College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China)
下载:  HTML   PDF (5308KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以低浓度的阿拉伯胶为稳定剂,采用反溶剂法制备萝卜硫素-玉米醇溶蛋白纳米水分散体,并对其理化性质及萝卜硫素的释放特性进行研究。结果表明:未包埋萝卜硫素的玉米醇溶蛋白-阿拉伯胶纳米颗粒平均粒径184.1 nm,多分散指数0.135,ζ-电位-33.5 mV,包埋萝卜硫素的颗粒平均粒径159.8~180.2 nm,多分散指数0.152~0.198,ζ-电位-32.1~-37.5 mV,颗粒近球形;当萝卜硫素与玉米醇溶蛋白的质量比为1∶25时,包封率为92.3%,载量43.4 mg/g;随着二者质量比增加,包封率显著下降,载量增幅不大,约60.6~78.7 mg/g。随着pH升高,pH 2~4时颗粒平均粒径显著减小,pH 4~8时其变化不显著;随着环境温度升高,25~55 ℃时,颗粒平均粒径变化不显著,55~85 ℃,平均粒径从200 nm左右增加到350 nm左右。萝卜硫素释放结果表明,60 min内累计释放率接近50%,240 min内几乎完全释放。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田倚凡
陈芳
谭小路
赵国华
叶发银
关键词:  萝卜硫素  玉米醇溶蛋白  纳米颗粒  阿拉伯胶  包埋    
Abstract: In this study, the sulforaphane-encapsulated zein aqueous nano-dispersions were prepared by anti-solvent method by using low concentrate gum arabic as a stabilizer. The physicochemical properties and releasing characteristics of sulforaphane were investigated. The results showed that the average size, polydispersity index (PDI), and zeta potential of zein/gum arabic nanoparticles without encapsulating sulforaphane were 184.1 nm, 0.135 and -33.5 mV, respectively. The size, PDI, and zeta potential of sulforaphane-encapsulated zein/gum arabic nanoparticles varied from 159.8 nm to 180.2 nm, 0.152 to 0.198, and -32.1 mV to -37.5 mV, respectively. The TEM results showed that the nanoparticles were nearly spherical. When the weight ratio of sulforaphane to zein was 1∶25, the encapsulation efficiency and loading capacity were 92.3% and 43.4 mg/g, respectively. As the weight ratio increased, the encapsulation efficiency decreased significantly while loading capacity slightly increased in the range of 60.6-78.7 mg/g. When the pH was increasing, the particle sizes of the nanoparticles at pH=2-4 decreased significantly, while changes at pH 4-8 were insignificant. The particle size changed insignificantly at 25-55 ℃, while it increased from 200 nm to about 350 nm with an increase in ambient temperature (55-85 ℃). The results of released sulforaphane showed that the cumulative releasing rate within 60 min was nearly 50% and almost completely released within 240 min. This study provides an experimental reference for encapsulating of sulforaphane.
Key words:  sulforaphane    zein    nanoparticles    gum arabic    encapsulation
收稿日期:  2018-02-12                出版日期:  2019-01-15      发布日期:  2019-02-01      期的出版日期:  2019-01-15
基金资助: 国家自然科学基金青年科学基金项目 (31601401);重庆市基础科学与前沿技术研究专项一般项目(cstc2017 jcyjAX0430);重庆市教委科学技术研究项目(KJ1706170)
作者简介:  本科生(叶发银副教授为通讯作者,E-mail:fye@swu.edu.cn)。
引用本文:    
田倚凡,陈芳,谭小路,等. 萝卜硫素-玉米醇溶蛋白纳米水分散体制备及性质[J]. 食品与发酵工业, 2019, 45(1): 121-127.
TIAN Yifan,CHEN Fang,TAN Xiaolu,et al. Preparation and physicochemical properties of sulforaphane- encapsulated zein aqueous nano-dispersions[J]. Food and Fermentation Industries, 2019, 45(1): 121-127.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017077  或          http://sf1970.cnif.cn/CN/Y2019/V45/I1/121
[1] GLADE M J, Michael M M. A glance at… broccoli, glucoraphanin, and sulforaphane[J].Nutrition, 2015, 31(9):1 175-1 178.
[2] PRASAD A K, MISHRA P C. Mechanism of action of sulforaphane as a superoxide radical anion and hydrogen peroxide scavenger by double hydrogen transfer: a model for iron superoxide dismutase[J]. The Journal of Physical Chemistry, 2015, 119(25): 7 825-7 836.
[3] 吴华彰,费鸿君,赵云利,等. 萝卜硫素对大肠杆菌抑菌机制的研究[J]. 四川大学学报(医学版), 2012, 3(39): 385-390.
[4] ZHAO F, ZHANG J, CHANG N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's disease[J]. European Journal of Pharmacology, 2018, 824:1-10.
[5] FIMOGNARI C, HRELIA P. Sulforaphane as a promising molecule for fighting cancer[J]. Mutation Research-Reviews in Mutation Research, 2007, 635(2-3): 90-104.
[6] JIN Y, WANG M, ROBERT T R, et al. Thermal degradation of sulforaphane in aqueous solution[J]. Journal of Agriculture and Food Chemistry, 1999, 47(8):3 121-3 123.
[7] 肖倩,梁浩,袁其朋. 温度、pH和光照对莱菔硫烷水溶液稳定性的影响[J]. 中国药学杂志, 2007, 42(3):193-196.
[8] WU H, LIANG H, YUAN Q. Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin[J]. Carbohydrate Polymers, 2010, 82(3):613-617.
[9] WU Y, MAO J, MEI L, et al. Kinetic studies of the thermal degradation of sulforaphane and its hydroxypropyl-β-cyclodextrin inclusion complex[J]. Food Research International, 2013, 53(1):529-533.
[10] WANG H, LIANG H, YUAN Q, WANG Tian-xin. A novel pH-sensitive microsphere composed of CM-chitosan and alginate for sulforaphane delivery[J]. Materials Science Forum, 2011, 687:539-547.
[11] TIAN G, LI Y, YUAN Q, et al. The stability and degradation kinetics of sulforaphane in microcapsules based on several biopolymers via spray drying[J]. Carbohydrate Polymers, 2015, 122:5-10.
[12] 郭春静,李晓通,孙蕊,等. 姜黄素-萝卜硫素共包载脂质体制备工艺研究[J]. 食品工业, 2017, 38(11):141-144.
[13] DANAFAR H, SHARAFI A, MANJILI H K. Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells[J]. Journal Pharmaceutical Development and Technology[J]. 2017, 22(5):642-651.
[14] 许辰琪,袁芳,高彦祥. 玉米醇溶蛋白作为传递载体研究进展[J]. 中国食品添加剂, 2015, 7:156-161.
[15] PATEL A R, VELIKOV K P. Zein as a source of functional colloidal nano- and micro-structures[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5):450-458.
[16] ZHONG Q, JIN M. Zein nanoparticles produced by liquid-liquid dispersion[J]. Food Hydrocolloids, 2009, 23(8):2 380-2 387.
[17] LI K, YIN S, YIN Y, et al. Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization[J]. Journal of Food Engineering, 2013, 119(2): 343-352.
[18] da ROSA C G, de OLIVEIRA BRISOLA MACIEL M V, de CARVALHO S M, et al. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481:337-344.
[19] LI S, WANG X, LI W, et al. Preparation and characterization of a novel conformed biopolymer paclitaxel-nanoparticle using tea polysaccharides and zein[J]. Carbohydrate Polymers, 2016, 146: 52-57.
[20] HU K, MCCLEMENTS D J. Fabrication of biopolymer anoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles[J]. Food Hydrocolloids, 2015, 44:101-108.
[22] DONG F, DONG Xi, ZHOU L, et al. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake[J]. Colloids and Surfaces B: Biointerfaces, 2016, 140:324-331.
[22] WU Y, ZOU L, MAO J, et al. Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying[J]. Carbohydrate Polymers, 2014, 102: 97-503.
[23] PENALVA R, ESPARZA I, GONZALEZ-NAVARRO C J, et al. Zein nanoparticles for oral folic acid delivery[J]. Journal of Drug Delivery Science and Technology, 2015, 30: 450-457.
[24] LUO Y, ZHANG B, WHENT M, et al. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study[J]. Colloids and Surfaces B: Biointerfaces, 2011, 85(2): 145-152.
[25] 傅玉颖,李可馨,王美,等. GA-zein复合纳米粒子运载姜黄色素体系的制备与特性[J]. 农业机械学报, 2017, 48(1): 267-274.
[26] PODARALLA S, PERUMAL O. Influence of formulations factors on the preparation of zein nanoparticles[J]. Aaps Pharmscitech, 2012, 13(3): 919-927.
[27] DROR Y, COHEN Y, YERUSHALMI-ROZEN R. Structure of gum arabic in aqueous solution[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(2):3 265-3 271.
[28] LIU S, ELMER C, LOW N H, et al. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes[J]. Food Research International, 2010, 43(2): 489-495.
[29] MOSCHAKIS T, MURRAY B S, BILIADERIS C G. Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions[J]. Food Hydrocolloids, 2010, 24(1): 8-17.
[30] CHEN H, ZHONG Q. A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil[J]. Food Hydrocolloids, 2015, 43: 593-602.
[31] CHEN J, ZHENG J, MCCLEMENTS D J, et al. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: Preparation, characterization, and functional performance[J]. Food Chemistry, 2014, 158:466-472.
[32] KO J Y, CHOI Y J, JEONG G J, et al. Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis[J]. Biomaterials, 2013, 34 (21):5 359-5 368.
[33] CHUACHAROEN T, SABLIOV C M. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503:11-18.
[34] PARRIS N, COOKE P H, Hicks K B. Encapsulation of essential oils in zein nanospherical particles[J]. Journal of Agricultural and Food Chemistry, 2005, 53(12): 4 788-4 792.
[35] DONSì F, VOUDOURIS P, SANDRA J V, et al. Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate[J]. Food Hydrocolloids, 2017, 63:508-517.
[36] ALI B H, ZIADA A, BLUNDEN G. Biological effects of gum arabic: A review of some recent research[J]. Food and Chemical Toxicology, 2009, 47(1):1-8.
[37] FRANKLIN S J, DICKINSON S E, KARLAGE K L, et al. Stability of sulforaphane for topical formulation[J]. Drug Development & Industrial Pharmacy, 2014, 40(4):494-502.
[1] 孔凡华, 杨春雪, 方从容, 邱楠楠, 徐佳佳, 白沙沙, 李东, 崔亚娟. 高效液相色谱法测定十字花科蔬菜中萝卜硫素的含量[J]. 食品与发酵工业, 2021, 47(8): 218-223.
[2] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[3] 孙烨, 李英浩, WULANDARI, 吕丽爽, 张秋婷. 超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响[J]. 食品与发酵工业, 2021, 47(1): 97-106.
[4] 林柳, 陶宁萍. 鱼头汤在体外仿生消化系统中的运动参数优化及消化特性研究[J]. 食品与发酵工业, 2020, 46(23): 92-98.
[5] 曾仪维, 张小萱, 程思俊, 刘欢, 闵婷, 梅运军. 一株亚硒酸钠还原菌的分离及纳米硒表征[J]. 食品与发酵工业, 2020, 46(22): 79-83.
[6] 董世荣, 王丽, 高昂, 徐微. 脱酰胺对玉米醇溶蛋白乳化特性和结构的影响[J]. 食品与发酵工业, 2020, 46(17): 67-72.
[7] 欧阳秀酝, 李琳, 张林威, 程云辉, 许宙. 基于荧光共振能量转移的免疫传感器检测黄曲霉毒素B1[J]. 食品与发酵工业, 2020, 46(16): 226-230.
[8] 黄静, 梁密. 改性蛭石吸附-包埋法固定化脂肪酶的研究[J]. 食品与发酵工业, 2020, 46(14): 103-107.
[9] 范方宇, 张蕊, 杨宗玲, 李晗, 陈乔稳. 纳米SiO2/阿拉伯胶复合膜的制备与性质研究[J]. 食品与发酵工业, 2020, 46(12): 147-152.
[10] 罗文涛, 王姿颐, 彭彬倩, 沈晓芳. 奇亚籽油微胶囊的制备[J]. 食品与发酵工业, 2020, 46(11): 210-215.
[11] 王记莲. 小麦醇溶蛋白-阿拉伯胶纳米颗粒的制备及表征[J]. 食品与发酵工业, 2020, 46(10): 222-226.
[12] 孙锦, 关欣, 寇宗亮, 蓝平, 蓝丽红, 廖安平. 淀粉纳米颗粒的高效制备及吸附性能[J]. 食品与发酵工业, 2019, 45(9): 108-116.
[13] 彭书东, 李键, 刘士健, 张玉, 王洪伟, 赵欣, 索化夷. 乳酸菌细菌素生物合成机制、抑菌机制及应用研究进展[J]. 食品与发酵工业, 2019, 45(6): 236-242.
[14] 郭婷,林淑凤,马良,谭红霞,张宇昊. 基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J]. 食品与发酵工业, 2019, 45(5): 218-223.
[15] 邓卓丹, 陈文学, 兰思琪, 陈卫军, 陈海明. 玉米醇溶蛋白-卵磷脂-槲皮素纳米颗粒的制备与抗氧化特性[J]. 食品与发酵工业, 2019, 45(23): 103-108.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn