Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (5): 259-265    DOI: 10.13995/j.cnki.11-1802/ts.017545
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
冲击波在肉类嫩化中的应用研究进展
曾令英1,贺稚非1,2,李洪军1,2*
1(西南大学 食品科学学院,重庆,400715)
2(重庆市特色食品工程技术研究中心,重庆, 400715)
Research progress on the application of shockwave to tenderize meat
ZENG Lingying1, HE Zhifei1,2, LI Hongjun1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China)
下载:  HTML   PDF (925KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 肉的嫩化是肉品加工业面临的难题之一,并且随着社会的发展,传统的嫩化技术已经越来越不能满足当今消费者的需求。而冲击波作为一种低成本、高效的新型嫩化技术,在肉制品加工过程中具有巨大的应用潜力。文章概述了冲击波的嫩化机理、设备发展和应用现状,分析了影响爆炸冲击波和电生冲击波嫩化效果的因素,并预测冲击波在肉制品中的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾令英
贺稚非
李洪军
关键词:  嫩化  冲击波  作用机制  应用    
Abstract: Tenderization of meat has always been one of the challenges faced by meat processing industries. With the development of the society, the traditional tenderization technology has become increasingly difficult to meet the needs of today′s consumers. As a low-cost, highly-efficient new tenderization technology, shockwave has a great potential for tenderizing meat products. This article outlined the mechanisms of tenderization by shockwave, reviewed the development and current application of the equipment. This paper also analyzed the factors affecting the effects of explosive shockwave and electrical shockwave on meat tenderization, and predicted the direction of developing shockwave technology in meat products. It was hoped that it could provide certain theoretical bases for applying shockwave to meat products at an industrial-scale, and developing new technologies for meat tenderization.
Key words:  tenderization    shockwave    working mechanism    application
               出版日期:  2019-03-15      发布日期:  2019-03-25      期的出版日期:  2019-03-15
基金资助: 重庆市草食牲畜产业技术体系(Y201706);重庆市特色食品工程技术研究中心能力提升项目(cstc2014pt-gc8001)
作者简介:  硕士(李洪军教授为通讯作者,E-mail:983362225@qq.com)。
引用本文:    
曾令英,贺稚非,李洪军. 冲击波在肉类嫩化中的应用研究进展[J]. 食品与发酵工业, 2019, 45(5): 259-265.
ZENG Lingying,HE Zhifei,LI Hongjun. Research progress on the application of shockwave to tenderize meat[J]. Food and Fermentation Industries, 2019, 45(5): 259-265.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.017545  或          http://sf1970.cnif.cn/CN/Y2019/V45/I5/259
[1] JIANG H, YOON S C, ZHUANG H, et al. Tenderness classification of fresh broiler breast fillets using visible and near-infrared hyperspectral imaging[J]. Meat Science, 2018, 139: 82-90.
[2] ANDERSON M J, LONERGAN S M, FEDLER C A, et al. Profile of biochemical traits influencing tenderness of muscles from the beef round[J]. Meat Science, 2012, 91(3):247-254.
[3] HOPKINS D L. Lawrie′s meat science[M]. 8th ed. UK: Woodhead Publishing, 2017: 357-381.
[4] WANG J, ABE A. A hybrid analytical model of sterilization effect on marine bacteria using microbubbles interacting with shock wave[J]. Journal of Marine Science & Technology, 2015, 21(3): 1-11.
[5] YASUDA A, KURAYA E, TOUYAMA A, et al. Underwater shockwave pretreatment process for improving carotenoid content and yield of extracted carrot (Daucus carota L.) juice[J]. Journal of Food Engineering, 2017, 211: 15-21.
[6] BOLUMAR T, TOEPFL S. Innovative food processing technologies[M]. New Jersey: Wiley & Sons, 2016: 231-258.
[7] HEINZ V, TOEPFL S. New options for targeted product modification[J]. Fleischwirtschaft International Journal for Meat Production & Meat Processing, 2009, 3: 11-13.
[8] BOLUMAR T, BINDRICH U, TOEPFL S, et al. Effect of electrohydraulic shockwave treatment on tenderness, muscle cathepsin and peptidase activities and microstructure of beef loin steaks from Holstein young bulls[J]. Meat Science, 2014, 98(4): 759-765.
[9] CLAUS J R. Emerging technologies in meat processing[M]. Madison: Department of Animal Sciences, 2016: 171-210.
[10] CLAUS J R, SCHILLING J K, MARRIOTT N G, et al. Tenderization of chicken and turkey breasts with electrically produced hydrodynamic shockwaves[J]. Meat Science, 2001, 58(3): 283-286.
[11] 季潇凯,毛衍伟,张一敏,等. 电刺激对牛肉品质影响研究进展[J]. 食品与发酵工业, 2017,43(11): 244-249.
[12] SORHEIM O, HILDRUM K I. Muscle stretching techniques for improving meat tenderness[J]. Trends in Food Science & Technology, 2002, 13(4):127-135.
[13] TAYLOR J, TOOHEY E S, EDWINA S, et al. SmartStretchTM technology VI. the impact of SmartStretchTM technology on the meat quality of hotboned beef striploin (m.; longissimus lumborum)[J]. Meat Science, 2013, 93(3): 413-419.
[14] NOOR S, RADHAKRISHNAN N S, HUSSAIN K. Emerging trends and technologies adopted for tenderization of meat: A review[J]. International Journal of Biotech Trends and Technology, 2016, 19: 20-25.
[15] 侯旭.吊挂方式和成熟时间对牛肉品质的影响及机理[D].泰安:山东农业大学,2014:8-9.
[16] OBUZ E, AKKAYA L, GOK V, et al. Effects of blade tenderization, aging method and aging time on meat quality characteristics of Longissimus lumborum steaks from cull Holstein cows[J]. Meat Science, 2014, 96(3):1 227-1 232.
[17] WARNER R, HA M, SIKES A, et al. Chapter 15-cooking and novel postmortem treatments to improve meat texture[M]. New Aspects of Meat Quality, 2017: 387-423.
[18] SOLOMON M B, SHARMA M, Patel J R. Nonthermal processing technologies for food [M]. New Jersey: Wiley-Blackwell, 2011, 54 (1): 98-108.
[19] SPANIER A M, BERRY B W, SOLOMON M B. Variation in tenderness of beef strip loins and improvement in tenderness by use of hydrodynamic pressure processing (HDP)[J]. Journal of Muscle Foods, 2010, 11(3): 183-196.
[20] SHARMA M, SHEARER A E H, HOOVER D G, et al. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4): 418-422.
[21] BOLUMAR T, MIDDENDORF D, TOEPFL S, et al. High pressure processing of food[M]. New York: Springer, 2016: 509-537.
[22] HA M, DUNSHEA F R, WARNER R D. A meta-analysis of the effects of shockwave and high pressure processing on color and cook loss of fresh meat[J]. Meat Science, 2017, 132: 107-111.
[23] BOWKER B C, EASTRIDGE J S, PAROCZAY E W, et al. Handbook of meat processing[M]. New Jersey: Wiley-Blackwell, 2010: 87-104.
[24] ZUCKERMAN H, BOWKER B C, EASTRIDGE J S, et al. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing[J]. Meat Science, 2013, 95(3): 603-607.
[25] BOWKER B C, FAHRENHOLZ T M, PAROCZAY E W, et al. Effect of hydrodynamic pressure processing and aging on sarcoplasmic proteins of beef strip lions*[J]. Journal of Muscle Foods, 2008, 19(2): 175-193.
[26] COOPER C. Meat tenderization by means of plasma sparking device: CA, 2255271 A1[P/OL].1998-12-11[2000-06-11].http://www.google.com/patents/CA2255271A1 cl=en.
[27] LONG J, THOMSEN P, WAITS D. Shock wave treatment of meat: US, 7244459 B2[P/OL]. 2007-07-17. http://www.freepatentsonline.com/7244459.html.
[28] TOEPFL S, HEINZ V. Technology reduction of the maturing time achieved tender beef production using electrohydraulic shock waves[J]. Fleischwirtschaft -Frankfurt-, 2011, 91(2): 46-48.
[29] SCHAEFER R B, GALLAGHER J. High efficiency long lifetime sparker sources: US, 6687189[P/OL]. 2002-04-02 [2004-02-03]. http://www.freepatentsonline.com/6687189.html.
[30] SOLOMON M B, LIU M N, PATEL J R, et al. Hydrodynamic pressure processing to improve meat quality and safety[J]. Science & Technology of Food Industry, 2006, 32(2):422-424.
[31] SOLOMON M B, LONG J B, EASTRIDGE J S. The hydrodyne: a new process to improve beef tenderness[J]. Journal of Animal Science, 1997, 75(6): 1 534-1 537.
[32] SOLOMON M B, LIU M N, PATEL J, et al. Tenderness improvement in fresh or frozen/thawed beef steaks treated with hydrodynamic pressure processing[J]. Journal of Muscle Foods, 2008, 19(1):98-109.
[33] WARNER R D, MCDONNELL C K, AED B, et al. Systematic review of emerging and innovative technologies for meat tenderisation[J]. Meat Science, 2017, 132: 72.
[34] BOLUMAR T, ENNEKING M, TOEPFL S, et al. New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review[J]. Meat Science, 2013, 95(4):931-939.
[35] YAMASHITA Y, ODA A, HUJII T, et al. The numerical analysis and experiment of shock processing for bouef[J]. International Journal of Multiphysics, 2016, 4(4):329-340.
[36] SOLOMON M B. The callipyge phenomenon: tenderness intervention methods[J]. Journal of Animal Science, 1999, 77 Suppl 2(1):238-242.
[37] SOLOMON M B, BERRY B W. Comparison of two different containers for performing the hydrodynamic pressure process[J]. Animal Science, 2000, 78 Suppl 1: 161.
[38] MEEK K I, DUNCAN S E, MARRIOTT N G, et al. Quality and sensory characteristics of selected post-rigor, early deboned broiler breast meat tenderized using hydrodynamic shockwaves[J]. Poultry Science, 2000, 79(1):126.
[39] BOWKER B C, SCHAEFER R B, GRAPPERHAUS M J, et al. Tenderization of beef loins using a high efficiency sparker[J]. Innovative Food Science & Emerging Technologies, 2011, 12(2): 135-141.
[40] SCHILLING M W, CLAUS J R, MARRIOTT N G, et al. No effect of hydrodynamic shock wave on protein functionality of beef muscle.[J]. Journal of Food Science, 2002, 67(1):335-340.
[41] MOELLER S, WULF D, MEEKER D, et al. Impact of the hydrodyne process on tenderness, microbial load, and sensory characteristics of pork longissimus muscle[J]. Journal of Animal Science, 1999, 77(8):2119-2 123.
[42] SOLOMON M B, CARPENTER C E, SNOWDER G D, et al. A research note tenderizing callipyge lamb with the hydrodyne process and electrical stimulation 1[J]. Journal of Muscle Foods, 1998, 9(3):305-311.
[43] BOWKER B C, CALLAHAN J A, SOLOMON M B. Effects of hydrodynamic pressure processing on the marination and meat quality of turkey breasts[J]. Poultry Science, 2010, 89(8):1 744.
[44] CLAUS J R, SCHILLING J K, MARRIOTT N G, et al. Hydrodynamic shockwave tenderization effects using a cylinder processor on early deboned broiler breasts[J]. Meat Science, 2001, 58(3):287-292.
[45] SOLOMON M. Meat quality improvement: Application of hydrodynamic pressure processing[J]. Einstein, 2013, 11(6): 383-391.
[46] SOLOMON M. Detection and identification of rare audiovisual cues[M]. Berlin: Springer Berlin Heidelberg, 2012:39-46.
[1] 张振霞, 徐炜, 吴昊, 张文立, 光翠娥, 沐万孟. 玉米赤霉烯酮内酯水解酶的鉴定、改造及应用[J]. 食品与发酵工业, 2021, 47(7): 285-291.
[2] 陈晓思, 贺稚非, 王泽富, 许雄, 李洪军. 蒸汽爆破技术的应用现状与发展前景[J]. 食品与发酵工业, 2021, 47(7): 322-328.
[3] 夏轩泽, 李言, 钱海峰, 张晖, 齐希光, 王立. 豌豆蛋白乳化性及其改善研究进展[J]. 食品与发酵工业, 2021, 47(2): 279-284.
[4] 朱文优, 陈文浩, 张超, 游玲, 侯茂. 生物工程专业创新型应用人才培养方案与运行模式的设计与实践[J]. 食品与发酵工业, 2020, 46(9): 295-300.
[5] 韩冰, 郑野, 徐嘉, 张天琪, 韩春然. 微乳体系的制备及其稳定性研究进展[J]. 食品与发酵工业, 2020, 46(24): 284-291.
[6] 黄卉, 魏涯, 杨贤庆, 岑剑伟, 赵永强, 陈胜军, 胡晓, 王悦齐, 郝淑贤. 肌肉改性处理对鸢乌贼品质的影响[J]. 食品与发酵工业, 2020, 46(22): 42-47.
[7] 韦巧艳, 张春艳, 王小明, 陈碧, 覃逸明. 基于应用型人才培养的《制糖工业分析》课程教学改革与实践[J]. 食品与发酵工业, 2020, 46(22): 292-296.
[8] 杨贤庆, 刘晶, 胡晓, 陈胜军, 吴燕燕, 李来好, 戚勃, 邓建朝, 杨莉莉. 海藻抗肿瘤活性肽的研究进展[J]. 食品与发酵工业, 2020, 46(21): 262-271.
[9] 张庆霞. 植物源防腐剂的抑菌机理及其在生鲜湿面保鲜中的应用[J]. 食品与发酵工业, 2020, 46(21): 310-316.
[10] 李芳, 李洪军, 李少博, 贺稚非. 天然香辛料的功能特性及其在肉与肉制品中的应用研究现状[J]. 食品与发酵工业, 2020, 46(20): 274-281.
[11] 孙海磊, 罗欣, 朱立贤, 毛衍伟, 张文华, 张一敏. 超声波技术在牛肉嫩化中的应用研究进展[J]. 食品与发酵工业, 2020, 46(20): 282-286.
[12] 李莉, 杜永华, 吴芳, 魏琴. “五联动式”创新性应用人才培养路径探讨与实践——以生物科学专业《香料产品开发与应用》课程为例[J]. 食品与发酵工业, 2020, 46(20): 300-304.
[13] 刘玉凌, 任亭, 彭玉梅, 曾胜, 贺云川, 杨波, 栾兴霞, 李君红, 罗远莉. 老盐水中乳酸菌的筛选鉴定及其在青菜头泡菜中的应用[J]. 食品与发酵工业, 2020, 46(2): 208-213.
[14] 张庆霞. 非热杀菌技术在生鲜湿面防腐保鲜中的应用研究现状[J]. 食品与发酵工业, 2020, 46(19): 289-294.
[15] 蒋茂婷, 黄雪松. 蒜氨酸生物活性的研究现状[J]. 食品与发酵工业, 2020, 46(16): 264-269.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn