Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (1): 229-235    DOI: 10.13995/j.cnki.11-1802/ts.018264
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
酶法合成环肽研究进展
程孝中,周志昉,吴志猛*
(江南大学,糖化学与生物技术教育部重点实验室,江苏 无锡,214122)
Research progress on enzyme-mediated cyclization of peptides
CHENG Xiaozhong, ZHOU Zhifang, WU Zhimeng*
(Key Laboratory of Carbohydrate Chemistry & Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (1030KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 环肽具有热稳定性、化学稳定性和选择性好,与靶分子亲和力强等优点,可以用于结构活性研究和药物开发。为了更深入研究它们的结构与功能,环肽的制备成为一个重要问题。目前,主要的合成方法为化学合成,这种方法需要全保护的线性肽底物,给合成带来了一定困难。近年来,酶法合成环肽发展为一种重要的合成策略,具有强大的环化能力以及高度的选择性,可以合成更为复杂的环肽。该文就最近几年报道的酶法合成环肽进行综述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程孝中
周志昉
吴志猛
关键词:    环肽  环化  多肽    
Abstract: Cyclic peptides are thermally and chemically stable. They have good selectivity and enhanced binding affinity towards target biomolecules. They can be used for structure-activity studies and por drug development. In order to further study their structures and functions, preparing cyclic peptides has become an important problem. Up to date, manufacturing cyclic peptides mainly relies on chemical synthesis, which requires fully protected linear peptide substrate and therefore represents a major challenge. Enzyme-mediated cyclization has been developed as a promising strategy due to their extremely powerful ligating ability and excellent selectivity, which can be applied to generate complex cyclic peptides. Herein, recent advances in enzyme-mediated cyclization of peptides were discussed in this review.
Key words:  enzyme    cyclic peptides    cyclization    peptides
收稿日期:  2018-07-12                出版日期:  2019-01-15      发布日期:  2019-02-01      期的出版日期:  2019-01-15
基金资助: 国家自然科学基金项目(21472070);江苏省特聘教授(2014);江苏省“六大人才高峰”( 2014-SWYY-017);江苏省创新团队(2014)
作者简介:  博士(吴志猛教授为通讯作者,E-mail:zwu@jiangnan.edu.cn)。
引用本文:    
程孝中,周志昉,吴志猛. 酶法合成环肽研究进展[J]. 食品与发酵工业, 2019, 45(1): 229-235.
CHENG Xiaozhong,ZHOU Zhifang,WU Zhimeng. Research progress on enzyme-mediated cyclization of peptides[J]. Food and Fermentation Industries, 2019, 45(1): 229-235.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.018264  或          http://sf1970.cnif.cn/CN/Y2019/V45/I1/229
[1] ONG Y S, GAO Li-qian, KALESH K A, et al. Recent advances in synthesis and identification of cyclic peptides for bioapplications[J]. Current Topics in Medicinal Chemistry, 2017, 17(20): 2 302-2 318.
[2] GAUSE G F, BRAZHNIKOVA M G. Gramicidin S and its use in the treatment of infected wounds[J]. Nature, 1944, 154:703.
[3] WHITE C J, YUDIN A K. Contemporary strategies for peptide macrocyclization[J]. Nature Chemistry, 2011, 3(7): 509-524.
[4] RUBIN S J S, QVIT N. Backbone-cyclized peptides: A critical review[J]. Current Topics in Medicinal Chemistry, 2018, 18(7): 526-555.
[5] BOCK V D, PERCIACCANTE R, JANSEN T P, et al. Click chemistry as a route to cyclic tetrapeptide analogues: Synthesis of cyclo-[Pro-Val-Psi(triazole)-Pro-Tyr][J]. Organic Letters, 2006, 8(5): 919-922.
[6] FUKUZUMI T,JU Lei, BODE J W. Chemoselective cyclization of unprotected linear peptides by alpha-ketoacid-hydroxylamine amide-ligation[J]. Organic & Biomolecular Chemistry, 2012, 10(30): 5 837-5 844.
[7] WHITE C J, YUDIN A K. Contemporary strategies for peptide macrocyclization[J]. Nature Chemistry, 2011, 3(7): 509-524.
[8] 王心哲,张光亚. 蛋白质环化的研究进展[J].生物工程学报, 2016, 32(4): 430-439.
[9] SCOTT C P, ABEL-SANTOS E, WALL M, et al. Production of cyclic peptides and proteins in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13 638-1 3643.
[10] XU Si-lin, ZHAO Zheng-guang, ZHAO Jun-feng. Recent advances in enzyme-mediated peptide ligation[J]. Chinese Chemical Letters, 2018, 29(7): 1 009-1 016.
[11] 马颖,刘忞之,王伟. 转肽酶A在蛋白质和多肽修饰中的应用[J].中国医药生物技术, 2017, 12(2): 157-161.
[12] 谭祥龙,许玲,石景,等. 转肽酶Sortase A在蛋白质修饰中的应用[J].化学进展, 2014, 26(10): 1 741-1 751.
[13] ZHANG Jing, YAMAGUCHI S, HIRAKAWA H, et al. Intracellular protein cyclization catalyzed by exogenously transduced Streptococcus pyogenes sortase A[J]. Journal of Bioscience and Bioengineering, 2013, 116(3): 298-301.
[14] WU Zhi-meng, GUO Xue-qing, GUO Zhong-wu. Sortase A-catalyzed peptide cyclization for the synthesis of macrocyclic peptides and glycopeptides[J]. Chemical Communications, 2011, 47(32): 9 218-9 220.
[15] WU Zhimeng, CHENG Xiaozhong, HONG Haofei, et al. New potent and selective alphavbeta3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation[J]. Bioorganic and Medicinal Chemistry Letters, 2017, 27(9): 1 911-1 913.
[16] BOLSCHER J G M, OUDHOFF M J, NAZMI K, et al. Sortase A as a tool for high-yield histatin cyclization[J]. FASEB Journal, 2011, 25(8): 2 650-2 658.
[17] JIA Xinying, KWON S, WANG C I, et al. Semienzymatic cyclization of disulfide-rich peptides using Sortase A[J]. Journal of Biological Chemistry, 2014, 289(10): 6 627-6 638.
[18] POPP M W L, PLOEGH H L. Making and breaking peptide bonds: Protein engineering using sortase[J]. Angewandte Chemie-International Edition, 2011, 50(22): 5 024-5 032.
[19] RASCHE N, TONILLO J, RIEKER M, et al. PROLink-single step circularization and purification procedure for the generation of an improved variant of human growth hormone[J]. Bioconjugate Chemistry, 2016, 27(5): 1 341-1 347.
[20] ZHANG Jing, YAMAGUCHI S, NAGAMUNE T. Sortase A-mediated synthesis of ligand-grafted cyclized peptides for modulating a model protein-protein interaction[J]. Biotechnol Journal, 2015, 10(9): 1 499-1 505.
[21] GUIMARAES C P, WITTE M D, THEILE C S, et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions[J]. Nature Protocols, 2013, 8(9): 1 787-1 799.
[22] ANTOS J M, CHEW G L, GUIMARAES C P, et al. Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity[J]. Journal of the American Chemical Society, 2009, 131(31): 10 800-10 801.
[23] WILLIAMSON D J, FASCIONE M A, WEBB M E, et al. Efficient N-terminal labeling of proteins by use of sortase[J]. Angewandte Chemie-International Edition, 2012, 51(37): 9 377-9 380.
[24] LI Yiming, LI Yitong, PAN Man, et al. Irreversible site-specific hydrazinolysis of proteins by use of sortase[J]. Angewandte Chemie-International Edition, 2014, 53(8): 2 198-2 202.
[25] WU Zhi-meng, LIU Shao-zhong, CHENG Xiao-zhong, et al. High yield synthesis of cyclic analogues of antibacterial peptides P-113 by Sortase A-mediated ligation and their conformation studies[J]. Chinese Chemical Letters, 2017, 28(3): 553-557.
[26] CRAIK D J, DALY N L, BOND T, et al. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif[J]. Journal of Molecular Biology, 1999, 294(5): 1 327-1 336.
[27] NGUYEN G K T, WANG Shu-jing, QIU Yi-bo, et al. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis[J]. Nature Chemical Biology, 2014, 10(9): 732-738.
[28] NGUYEN G K T, HEMU X, QUEK J P, et al. Butelase-mediated macrocyclization of d-amino-acid-containing peptides[J]. Angewandte Chemie-International Edition, 2016, 55(41): 12 802-12 806.
[29] NGUYEN G K, QIU Yi-bo, CAO Yuan, et al. Butelase-mediated cyclization and ligation of peptides and proteins[J]. Nat Protocols, 2016, 11(10): 1 977-1 988.
[30] HEMU X, QIU Yi-bo, NGUYEN G K, et al. Total synthesis of circular bacteriocins by butelase 1[J]. Journal of the American Chemical Society, 2016, 138(22): 6 968-6 971.
[31] HARRIS K S, DUREK T, KAAS Q, et al. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase[J]. Nature Communications, 2015, 6:10 199.
[32] YANG Ren-liang, WONG Y H, NGUYEN G K T, et al. Engineering a catalytically efficient recombinant protein ligase[J]. Journal of the American Chemical Society, 2017, 139(15): 5 351-5 358.
[33] JACKSON D Y, BURNIER J P, WELLS J A. Enzymatic cyclization of linear peptide esters using subtiligase[J]. Journal of the American Chemical Society, 1995, 117(2): 819-820.
[34] TOPLAK A, NUIJENS T, QUAEDFLIEG P J L M, et al. Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water[J]. Advanced Synthesis & Catalysis, 2016, 358(13): 2 140-2 147.
[35] SCHMIDT M, TOPLAK A, QUAEDFLIEG P J L M, et al. Omniligase-1: A powerful tool for peptide head-to-tail cyclization[J]. Advanced Synthesis & Catalysis, 2017, 359(12): 2 050-2 055.
[36] TRAUGER J W, KOHLI R M, MOOTZ H D, et al. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase[J]. Nature, 2000, 407(6 801): 215-218.
[37] GRUNEWALD J, MARAHIEL M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides[J]. Microbiology and Molecular Biology Reviews, 2006, 70(1): 121-146.
[38] KOHLI R M, TRAUGER J W, SCHWARZER D, et al. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases[J]. Biochemistry, 2001, 40(24): 7 099-7 108.
[39] KOHLI R M, WALSH C T, BURKART M D. Biomimetic synthesis and optimization of cyclic peptide antibiotics[J]. Nature, 2002, 418(6 898): 658-661.
[40] WU Xiao-ming, BU Xian-zhang, WONG Ka-man, et al. Biomimetic synthesis of gramicidin S and analogues by enzymatic cyclization of linear precursors on solid support[J]. Organic Letters, 2003, 5(10): 1 749-1 752.
[41] LEE J, MCINTOSH J, HATHAWAY B J, et al. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates[J]. Journal of the American Chemical Society, 2009, 131(6): 2 122-2 124.
[42] MCINTOSH J A, ROBERTSON C R, AGARWAL V, et al. Circular logic: Nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst[J]. Journal of the American Chemical Society, 2010, 132(44): 15 499-15 501.
[43] KOEHNKE J, BENT A, HOUSSEN W E, et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain[J]. Nature Structural & Molecular Biology, 2012, 19(8): 767-772.
[44] BRAS N F, FERREIRA P, CALIXTO A R, et al. The catalytic mechanism of the marine-derived macrocyclase PatGmac[J]. Chemistry-a European Journal, 2016, 22(37): 13 089-13 097.
[45] SARDAR D, LIN Zhen-jian, SCHMIDT E W. Modularity of RiPP enzymes enables designed synthesis of decorated peptides[J]. Chemistry & Biology, 2015, 22(7): 907-916.
[46] ALEXANDRU-CRIVAC C N, UMEOBIKA C, LEIKOSKI N, et al. Cyclic peptide production using a macrocyclase with enhanced substrate promiscuity and relaxed recognition determinants[J]. Chemical Communications, 2017, 53(77): 10 656-10 659.
[47] OUEIS E, JASPARS M, WESTWOOD N J, et al. Enzymatic macrocyclization of 1,2,3-triazole peptide mimetics[J]. Angewandte Chemie-International Edition, 2016, 55(19): 5 842-5 845.
[48] ZHANG Chi, DAI Ping, SPOKOYNY A M, et al. Enzyme-catalyzed macrocyclization of long unprotected peptides[J]. Organic Letters, 2014, 16(14): 3 652-3 655.
[49] MINDT T L, JUNGI V, WYSS S, et al. Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase[J]. Bioconjugate Chemistry, 2008, 19(1): 271-278.
[50] TOUATI J, ANGELINI A, HINNER M J, et al. Enzymatic cyclisation of peptides with a transglutaminase[J]. Chembiochem, 2011, 12(1): 38-42.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 孙杨, 王丽君, 杨套伟, 付维来, 易敢峰, 饶志明. 氧甲基转移酶编码基因ploy (A)加尾促进粘质沙雷氏菌合成灵菌红素能力研究[J]. 食品与发酵工业, 2021, 47(9): 49-56.
[3] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[4] 李童, 钱斌, 周建弟, 徐岩, 王栋. 中性脲酶固定化降解黄酒中尿素[J]. 食品与发酵工业, 2021, 47(9): 70-75.
[5] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[6] 符群, 郐滨, 钟明旭, 吴小杰. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
[7] 蔡燕, 田丹, 严鑫, 李百裕, 李宇杰, 于丽娟, 吴锦明. 一步法快速从脱脂豆粉中三相分离脂肪氧合酶[J]. 食品与发酵工业, 2021, 47(9): 149-153.
[8] 张恕铭, 曾林, 孙向阳, 汪杰, 孙擎, 张庆, 谭霄. 屎肠球菌与植物乳杆菌共培养产γ-氨基丁酸条件优化及关键酶活性研究[J]. 食品与发酵工业, 2021, 47(9): 154-159.
[9] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[10] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[11] 杨丽嫔, 杨倩, 王黎丽, 周瑞敏, 高成成, 刘琴. 铁棍山药黏液复合乳液保鲜鲜切马铃薯研究[J]. 食品与发酵工业, 2021, 47(8): 46-53.
[12] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[13] 赵海萍, 南丽娟, 雒雪丽, 杨伟霞, 韩雍, 李忠宏. Ni/Co层状氢氧化物模拟氧化物酶可视化检测海产品中Hg2+[J]. 食品与发酵工业, 2021, 47(8): 204-211.
[14] 侯钰柯, 石金明, 曾宪明, 尹家琪, 田惠鑫, 白云, 唐长波, 韩敏义, 徐幸莲. 类蛋白反应及其在肉类中的应用[J]. 食品与发酵工业, 2021, 47(8): 261-267.
[15] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn