Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (8): 50-56    DOI: 10.13995/j.cnki.11-1802/ts.019536
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
常见乳酸菌降解亚硝酸盐机理探讨
王一茜1,2, 荣金诚1,2, 王晓辉1,2, 迟乃玉1,2, 张庆芳1,2*, 李美玉1,2
1(大连大学 生命科学与技术学院,辽宁 大连,116622)
2(辽宁省海洋微生物工程技术研究中心,辽宁 大连,116622)
Mechanisms of nitrite degradation by lactic acid bacteria commonly appeared in foods
WANG Yiqian1,2, RONG Jincheng1,2, WANG Xiaohui1,2, CHI Naiyu1,2, ZHANG Qingfang1,2*, LI Meiyu1,2
1(College of Life Science and Technology, Dalian University, Dalian 116622, China)
2(Liaoning Marine Micr-obial Engineering and Technology Center, Dalian 116622, China)
下载:  HTML   PDF (2725KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该实验对Lactobacillus plantarumLactobacillus brevisLactobacillus rhamnosus的产酸特性、NO-2降解能力、16S rDNA序列及其亚硝酸盐还原酶(nitrite reductase,NiR)蛋白序列进行了研究与分析。结果表明,Lactobacillus brevis降解NO-2能力最强,可能是该菌有nir基因,在NO-2的诱导下产生NiR;该菌产酸量较低,较少的H+和NiR降解NO-2生成的氨类物质,使发酵环境一直处于NiR最适作用pH值(5.0 ~ 6.0),从而使NO-2大量被NiR分解。Lactobacillus plantarumLactobacillus brevis亲缘关系较近,当环境pH值>4.5时,它主要在NiR作用下分解NO-2;但Lactobacillus plantarum产酸能力较强,能快速使环境pH值<4.0,从而迅速进入NO-2被H+降解阶段。Lactobacillus rhamnosusLactobacillus brevisLactobacillus plantarum亲缘关系较远,没有找到nir基因,但Lactobacillus rhamnosus产酸能力较强,其降解NO-2机理可能主要是酸降解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王一茜
荣金诚
王晓辉
迟乃玉
张庆芳
李美玉
关键词:  亚硝酸盐降解  Lactobacillus plantarum  Lactobacillus brevis  Lactobacillus rhamnosus    
Abstract: The acidogenic characteristics, NO-2 degradation abilities, 16S rDNA sequences, and amino acid sequences of nitrite reductases (NiR) of Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus rhamnosus were analyzed. It was found that L. brevis had the strongest ability to degrade nitrite as it may contain nir that could be translated into NiR under NO-2 induction. Nevertheless, it had low acid yield. Therefore, less H+ and NiR degraded ammonia-formed substances produced by NO-2, causing the fermentation environment was always at the optimum pH of NiR (5.0-6.0), resulting large amount of NO-2 could be decomposed by NiR. L. plantarum was closely related to L. brevis. When the pH value was >4.5, it mainly decomposed NO-2 by NiR. However, L. plantarum had strong acid-producing ability and could quickly make the pH to be lower than 4.0, and NO-2 was consequently degraded by H+. L. rhamnosus had a remote relationship with L. brevis and L. plantarum. It had no nir, but its acid production ability was strong. Therefore, its NO-2 degradation mechanism might mainly be acid degradation.
Key words:  nitrite degradation    Lactobacillus plantarum    Lactobacillus brevis    Lactobacillus rhamnosus
收稿日期:  2018-12-05      修回日期:  2018-12-20           出版日期:  2019-04-25      发布日期:  2019-05-14      期的出版日期:  2019-04-25
基金资助: 国家高技术研究发展计划“863计划”项目(No.201 8YFC0311100);国家高技术研究发展计划“863计划”项目(No.2014AA093512)
作者简介:  硕士研究生(张庆芳教授为通讯作者,E-mail:zqf7566@126.com)。
引用本文:    
王一茜,荣金诚,王晓辉,等. 常见乳酸菌降解亚硝酸盐机理探讨[J]. 食品与发酵工业, 2019, 45(8): 50-56.
WANG Yiqian,RONG Jincheng,WANG Xiaohui,et al. Mechanisms of nitrite degradation by lactic acid bacteria commonly appeared in foods[J]. Food and Fermentation Industries, 2019, 45(8): 50-56.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019536  或          http://sf1970.cnif.cn/CN/Y2019/V45/I8/50
[1] 贺纪正,张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报,2009,29(1):406-415.
[2] 龚骏,张晓黎. 微生物在近海氮循环过程的贡献与驱动机制[J]. 微生物学通报,2013(1):44-58.
[3] SINDELAR J J,MILKOWSKI A L. Human safety controversies surrounding nitrate and nitrite in the diet[J].Nitric Oxide,2012,26(4):259-266.
[4] BRYANA N S, ALEXANDERB D D, COUGHLINC J R, et al. Ingested nitrate and nitrite and stomach cancer risk:An updated review[J]. Food and Chemical Toxicology,2012,50(10):3 646-3 665.
[5] 皇甫超申,史齐,李延红,等. 亚硝酸盐对人体健康的利害分析[J]. 环境与健康杂志,2010(8):733-736.
[6] 卢尧. 肉制品腌制过程中亚硝酸盐变化规律及生物抗氧化剂对亚硝酸盐的抑制作用研究[D].长春:吉林大学,2016.
[7] 王旭东.16例急性亚硝酸盐中毒的临床分析[J].大家健康(学术版),2013,7(24):137.
[8] 陈志诚,陈立亚,陈素哲.亚硝酸盐中毒31例临床分析[J]. 临床荟萃,2011, 26(4): 329-330.
[9] 赵静,王娜,冯叙桥,等. 蔬菜中硝酸盐和亚硝酸盐检测方法的研究进展[J]. 食品科学,2014,35(8):42-49.
[10] 彭小云. 亚硝酸盐在水产养殖中的危害[J]. 渔业致富指南,2015(12):63-64.
[11] 周平. 氨氮对水产养殖的危害及防治措施[J]. 中国水产,2013(8):63-64.
[12] MONSEES, H, KLATT L, KLOAS W, et al.Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus L.) in recirculating aquaculture systems[J].Aquaculture Research,2017,48(7):3 482-3 492.
[13] 谢燕丹,刘零怡,楼乔明,等. 加工蔬菜中亚硝酸盐的消除技术研究进展[J]. 食品与发酵工业,2016,42(8):279-286.
[14] 赵慧娟,程旭. 亚硝酸盐降解进展研究[J]. 吉林农业,2016(22):84.
[15] 崔珏,孙会刚,朱兆丽,等.酸菜中降解亚硝酸盐乳酸菌的筛选、鉴定及其在发酵香肠中的应用[J].食品工业科技,2016,37(18):251-255.
[16] 于华,刘有晴,黄丹,等.泡菜中高产酸、高效降解亚硝酸盐的乳酸菌分离鉴定及应用[J].中国调味品,2016,41(6):34-38.
[17] 张庆芳,迟乃玉,郑学仿,等.短乳杆菌(Lactobacillus brevis)去除亚硝酸盐的研究[J].微生物学通报,2004,31(2):55-60.
[18] 柳念,陈佩,高冰,等.乳酸菌降解亚硝酸盐的研究进展[J]. 食品科学,2017(7):290-295.
[19] 张庆芳,迟乃玉,郑艳,等.乳酸菌降解亚硝酸盐机理的研究[J].食品与发酵工业,2002,28(8):27-31.
[20] 李星云. 乳酸菌的分离筛选及在羊肉发酵香肠中的应用[D].呼和浩特:内蒙古农业大学,2010.
[21] 张庆峰,吴祖芳,翁佩芳,等. 浙东腌冬瓜优势乳酸菌的分离及产酶特性分析[J]. 现代食品科技,2016,(3):119-125.
[22] 栗永乐. 酸菜中乳酸菌的分离鉴定以及益生特性的研究[D].呼和浩特:内蒙古农业大学,2012.
[23] 武昕媛,赵云冬,孙丽媛. 东北发酵食物中乳杆菌的研究[J]. 食品工业,2017(5):204-208.
[24] 迟雪梅,张庆芳.食品中常见乳酸菌高效降解NO-2发酵性能评价[J].食品与发酵工业,2017,43(6):78-84.
[25] 周通,徐波.乳酸菌亚硝酸还原酶代谢调控研究进展[J]. 江西科学,2014,32(2):139-143.
[26] 梁书诚,赵敏,卢磊,等. 好氧反硝化菌脱氮特性研究进展[J]. 应用生态学报,2010,21(6):1 581-1 588.
[27] ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular biology reviews,1997,61(4):533-616.
[28] 龚钢明,吕玉涛,管世敏,等.乳酸菌亚硝酸盐还原酶制备及酶学性质[J].中国酿造,2011(1):58-60.
[29] ADHIKARI U K,RAHMAN M M. Comparative analysis of amino acid composition in the active site of nirk gene encoding copper-containing nitrite reductase (CuNiR) in bacterial spp.[J].Computational Biology and Chemistry,2017,67:102-113.
[30] 王英,周剑忠,李清,等.植物乳杆菌SD-7的分离鉴定及其亚硝酸盐降解特性[J].中国食品学报,2016,16(7):97-104.
[31] 孔得杨. 微生物氮转化途径综述[J]. 西部皮革,2017(4):42-47.
[32] 何婷婷. 植物乳杆菌亚硝酸盐还原酶编码基因的研究[D].上海:上海师范大学,2012.
[33] 杨丽娜,迟雪梅,迟乃玉,等.常用食品乳酸菌发酵蔬菜的研究[J]. 食品与发酵工业,2017,43(3):134-137;143.
[34] 张庆芳,迟乃玉,孟宪军,等.蔬菜腌渍发酵乳酸菌剂的研究[J].食品与发酵工业,2004,30(1):13-16.
[35] 魏日华,桂荣,塔娜. 牧草中异型发酵乳酸菌的分离与鉴定[J]. 草业科学,2010,27(10):149-153.
[36] 韩宏娇,丛敏,李欣蔚,等.自然发酵酸菜化学成分含量和微生物数量的动态变化及其相关性分析[J/OL].食品工业科技, 2019,40(2):148-153.
[37] 李春,孙迪,刘丽波,等. 鼠李糖乳杆菌降解亚硝酸盐影响因素研究[J]. 中国酿造,2011,30(7):64-66.
[38] 张君超,谢远红,金君华,等. 产乳酸菌素菌株的筛选鉴定及其特性分析[J]. 食品工业科技,2016,37(9):169-174.
[39] 辛玉峰,赵天颖,曲晓华.两类产NO的亚硝酸盐还原酶的分布,结构与序列比较及宏基因组分析[J]. 微生物学报,2017,57(4):597-608.
[40] CUTRUZZOL À F. Bcaterial nitric oxide synthesis[J]. Biochimica et biophysica Acta, 1999,1 411(2-3):231-249.
[41] COYNE M S, ARUNAKUMARI A L A, AVERILL B A, et al. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria [J]. Applied and Environmental Microbiology, 1989, 55(11): 2 924-2 931.
[42] 贺璟,聂乾忠,邓洁红. 鼠李糖乳杆菌功能特性的研究进展[J]. 农产品加工(学刊),2012(3):117-120.
[1] 熊蝶, 袁岚玉, 李媛媛, 范鹏飞, 冯武. 陕西泡菜中降解亚硝酸盐乳酸菌的筛选及其发酵特性与耐受性研究[J]. 食品与发酵工业, 2021, 47(6): 139-144.
[2] 郭帅, 韩之皓, 黄天, 郑岩, 王月娇, 白梅, 王记成, 孙天松, 张和平. Streptococcus thermophilus S10复合Lactobacillus plantarum P-8在发酵豆乳中的应用[J]. 食品与发酵工业, 2019, 45(3): 7-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn