Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (10): 16-21    DOI: 10.13995/j.cnki.11-1802/ts.019814
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
解淀粉芽孢杆菌胞外多糖对乳酸菌生长及代谢的调控作用
蔡国林1,2,3, 刘逸凡2, 李晓敏2, 陆健1,2,3*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
3(江南大学 生物工程学院,江苏 无锡,214122)
Effects of Bacillus amyloliquefaciens exopolysaccharides on proliferation and metabolism of lactic acid bacteria
CAI Guolin1,2,3, LIU Yifan2, LI Xiaomin2, LU Jian1,2,3*
1(Key Laboratory of Industrial Biotechnology, Ministry of Education (Jiangnan University), Wuxi 214122, China)
2(National Engineering Laboratory for Cereal Fermentation Technology (Jiangnan University), Wuxi 214122, China)
3(School of Biotechnology,Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (1288KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究解淀粉芽孢杆菌JN4的胞外多糖(exopolysaccharide, EPS-JN4)对乳酸菌生长及代谢的调控作用,有利于阐明EPS-JN4定向增殖乳酸菌的作用机制。采用PCR-变性梯度凝胶电泳技术分析EPS-JN4的定向增殖作用,并考察其对主要乳酸菌生长、主要代谢产物、肠道耐受性和表面疏水性的影响。EPS-JN4可以定向增殖罗伊氏乳杆菌,其对罗伊氏乳杆菌JN125的前期增殖速度较葡萄糖慢,但最高菌浓为葡萄糖的5.25倍,代谢产物中乳酸和醋酸含量则较葡萄糖分别降低了12.2%和32.4%。EPS-JN4增殖的罗伊氏乳杆菌JN125的肠道耐受性和表面疏水性显著提高,对其原因初步分析表明细胞膜蛋白和脂类物质含量提高了40.8%和105.7%,细胞膜组成中的十八碳脂肪酸和不饱和脂肪酸显著提高。EPS-JN4可以作为潜在的益生元,用于调节动物肠道健康。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡国林
刘逸凡
李晓敏
陆健
关键词:  解淀粉芽孢杆菌  胞外多糖  乳酸菌  益生元  生长  代谢    
Abstract: This study aimed to investigate the effects of exopolysaccharides from Bacillus amyloliquefaciens JN4 (EPS-JN4) on the propagation and metabolism of probiotics. The specific proliferative effects of EPS-JN4 were analyzed by PCR-denaturing gradient gel electrophoresis, and their effects on the growth, metabolites, intestinal tolerance, and surface hydrophobicity of lactic acid bacteria were also determined. It was found that EPS-JN4 had a specific proliferative effect on Lactobacillus reuteri. Compared to glucose, the early proliferation rate of L. reuteri JN125 treated with EPS-JN4 was slower, but its highest biomass was 4.25 times higher. In addition, the contents of lactic acid and acetic acid reduced by 12.2% and 32.4%, respectively. The intestinal tolerance and surface hydrophobicity of EPS-JN4-treated L. reuteri JN125 significantly improved, which could be due to the protein and lipid contents in cell membranes increased by 40.8% and 105.7%, respectively. Besides, the proportions of 18 C fatty acids and unsaturated fatty acids in cell membranes significantly increased. In conclusion, EPS-JN4 can be used as a potential prebiotic to regulate the intestinal health of animals.
Key words:  Bacillus amyloliquefaciens    exopolysaccharide    lactic acid bacteria    prebiotic    growth    metabolism
收稿日期:  2018-12-29                出版日期:  2019-05-25      发布日期:  2019-06-17      期的出版日期:  2019-05-25
基金资助: 国家重点基础研究发展计划(973计划,2013CB7336 02);高等学校学科创新引智计划(111计划)资助项目(111-2-06);江苏高校优势学科建设工程资助项目
作者简介:  博士研究生,副研究员(陆健教授为通讯作者,E-mail:jlu@jiangnan. edu.cn)。
引用本文:    
蔡国林,刘逸凡,李晓敏,等. 解淀粉芽孢杆菌胞外多糖对乳酸菌生长及代谢的调控作用[J]. 食品与发酵工业, 2019, 45(10): 16-21.
CAI Guolin,LIU Yifan,LI Xiaomin,et al. Effects of Bacillus amyloliquefaciens exopolysaccharides on proliferation and metabolism of lactic acid bacteria[J]. Food and Fermentation Industries, 2019, 45(10): 16-21.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019814  或          http://sf1970.cnif.cn/CN/Y2019/V45/I10/16
[1] SUTHERLAND I W. Novel and established applications of microbial polysaccharides[J]. Trends in Biotechnology, 1998, 16(1):41-46.
[2] ONER E T, HEMANDEZ L, COMBIE J. Review of Levan polysaccharide: From a century of past experiences to future prospects[J]. Biotechnology Advances, 2016, 34(5): 827-844.
[3] SCHMID J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies[J]. Current Opinion in Biotechnology, 2018, 53:130-136.
[4] LIANG T W, WANG S L. Recent advances in exopolysaccharides from Paenibacillus spp.: Production, isolation, structure, and bioactivities[J]. Marine Drugs, 2015, 13(4): 1 847-1 863.
[5] BADEL S, BERNARDI T, MICHAUD P. New perspectives for Lactobacilli exopolysaccharides[J]. Biotechnology Advance, 2011, 29(1):54-66.
[6] FELS L, JAKOB F, VOGEL R F, et al. Structural characterization of the exopolysaccharides from water kefir[J]. Carbohydrate Polymers, 2018, 189: 296-303.
[7] ZHANG H, REN W, GUO Q B, et al. Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333[J]. Food Hydrocolloids, 2018, 81, 220-228.
[8] YU X, AVALL-JAASKELAINEN S, KOOT J, et al. A comparative characterization of different host-sourced Lactobacillus ruminis strains and their adhesive, inhibitory, and immunomodulation functions[J]. Frontiers in Microbiology, 2017, 8:657.
[9] FUCHS V I, SCHMIDT J, SLATER M J, et al. Influence of immunostimulant polysaccharides, nucleic acids, and Bacillus strains on the innate immune and acute stress response in turbots (Scophthalmus maximus) fed soy bean- and wheat-based diets[J]. Fish Physiology and Biochemistry, 2017, 43(6): 1 501-1 515.
[10] POURABEDIN M, ZHAO X. Prebiotics and gut microbiota in chickens[J]. FEMS Microbiology Letters, 2015, 362(15): fnv122.
[11] GOULET O. Potential role of the intestinal microbiota in programming health and disease[J]. Nutrition Reviews, 2015, 73(Supp 1):32-40.
[12] SALAZAR N, GUEIMONDE M, DW LOS REYES-GAVILÁN C G, et al. Exopolysaccharides produced by Lactic acid bacteria and Bifidobacteria as fermentable substrates by the intestinal microbiota[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(9):1 440-1 453.
[13] GOMAA E Z. Effect of prebiotic substances on growth, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1[J]. Microbiology, 2017, 86(5): 618-628.
[14] MOZZI F, GERBINO E, DE VADEZ G F, et al. Functionality of exopolysaccharides produced by lactic acid bacteria in an in vitro gastric system[J]. Journal of Applied Microbiology, 2009, 107(1): 56-64.
[15] TOLSTOGUZOV V. Why were polysaccharides necessary? [J]. Origins of Life and Evolution of Biospheres, 2004, 34(6): 571-597.
[16] 蔡国林, 冯文旭,刘逸凡,等. 高产抑制大肠杆菌血凝性的胞外多糖的解淀粉芽孢杆菌[J]. 食品与发酵工业,2019,45(5):14-18.
[17] JACOBS C M, UTTERBACK P L, PARSONS C M. Cecal microbial populations of young chicks fed several prebiotic-type compounds as determined by DGGE and quantitative PCR[J]. Journal of Dairy Science, 2010, 93:283-283.
[18] GOMAA E Z. Effect of prebiotic substances on growth, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1[J]. Microbiology, 2017, 86(5):618-628.
[19] DAS D, BARUAH R, GOYAL A. A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5[J]. International Journal of Biological Macromolecules,2014, 69:20-26.
[20] 杨亚威, 赵爱梅,王辑,等. 传统奶豆腐中产胞外多糖乳酸菌的分离筛选及其潜在益生菌特性[J]. 中国乳品工业, 2015, 43(12):8-13.
[21] 邱然, 陆健. 啤酒污染菌的鉴定及其细胞膜脂肪酸的组成分析[J].食品与发酵工业, 2017, 43(7):55-61.
[22] DE PRETER V, HAMER H M, WINDEY K, et al. The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health?[J]. Molecular Nutrition and Food Research, 2011, 55(1):46-57.
[23] ZHANG B, WANG Y P, TAN Z F, et al. Screening of probiotic activities of Lactobacilli strains isolated from traditional Tibetan Qula, a raw yak milk cheese[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(10):1 490-1 499.
[24] SUZUKI K,IIJIMA K,SAKAMOTO K,et al. A review of hop resistance in beer spoilage lactic acid bacteria[J]. Journal of the Institute of Brewing, 2006, 112(2):173-191.
[25] MYKYTCZUK N C S, TREYORS J T, LEDUC L G, et al. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress [J]. Progress in Biophysics and Molecular Biology, 2007, 95(3):60-82.
[1] 吴卓凡, 呼子暄, 王金晶, 刘春凤, 钮成拓, 郑飞云, 李崎. 多组学分析揭示拉格酵母应答高浓度麦汁机制[J]. 食品与发酵工业, 2021, 47(9): 76-83.
[2] 任春霖, 董红丽, 王风芹, 宋安东. 低聚木糖生产技术及其对动物益生作用研究进展[J]. 食品与发酵工业, 2021, 47(9): 293-298.
[3] 芦楠, 李宇虹, 陈宁, 张成林. L-异亮氨酸及其衍生物代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(9): 307-313.
[4] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[5] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[6] 朱琳, 郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
[7] 张波, 谢广发, 李国龙, 孙国昌, 金建明, 朱炜俊, 刘菊. 黄酒生物酸化浸米与浸米浆水的利用[J]. 食品与发酵工业, 2021, 47(7): 168-174.
[8] 梁鑫, 陈思雨, 赵育, 雷钰, 孔倩倩, 万欣, 张宝善. 乳酸菌和酵母菌发酵红枣汁工艺优化及成分分析[J]. 食品与发酵工业, 2021, 47(7): 175-182.
[9] 吴小艳, 刘文星, 刘忠义, 李希宇, 付满, 李汀. 芒果酸奶发酵及后熟过程中乳酸菌素的产生及其抑菌作用[J]. 食品与发酵工业, 2021, 47(7): 183-188.
[10] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[11] 孙媛媛, 崔树茂, 唐鑫, 毛丙永, 赵建新, 陈卫. 发酵乳杆菌的生长限制性因素分析及高密度培养工艺优化[J]. 食品与发酵工业, 2021, 47(6): 1-10.
[12] 黄藩, 唐晓波, 徐斌, 张厅, 罗凡, 马泽强. 不同光质萎凋对贡眉白茶滋味品质的影响[J]. 食品与发酵工业, 2021, 47(6): 127-133.
[13] 熊蝶, 袁岚玉, 李媛媛, 范鹏飞, 冯武. 陕西泡菜中降解亚硝酸盐乳酸菌的筛选及其发酵特性与耐受性研究[J]. 食品与发酵工业, 2021, 47(6): 139-144.
[14] 邢晓莹, 刘毅, 张怀敏, 李江涌, 王如福. 山西老陈醋醋酸发酵过程中优良产酸菌株的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(6): 201-207.
[15] 王曼, 杨琛, 覃晓玉, 康孟杰, 郝桂芳, 王承明. 鲊肉粉中乳酸菌和葡萄球菌的筛选及鉴定[J]. 食品与发酵工业, 2021, 47(5): 22-27.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn