Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (10): 22-28    DOI: 10.13995/j.cnki.11-1802/ts.019842
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
高分子质量聚唾液酸生产菌株诱变筛选及其发酵优化
高霖1, 朱莉2, 杨泽林1, 詹晓北1*, 吴剑荣1
1(江南大学 生物工程学院,糖化学与生物技术教育部重点实验室,江苏 无锡,214122)
2(无锡格莱克斯生物科技有限公司,江苏 无锡,214125)
Mutagenesis and fermentation optimization of Escherichia coli K235 producing high molecular weight polysialic acid
GAO Lin1, ZHU Li2, YANG Zelin1, ZHAN Xiaobei1*, WU Jianrong1
1(School of Biotechnology, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China)
2(Wuxi Glyco Biotechology Co. Ltd, Wuxi 214125, China)
下载:  HTML   PDF (2695KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得产高分子质量聚唾液酸(polysialic acid,PSA)菌株,分步采用常温常压等离子体(atmospheric and room temperature plasma,ARTP)和硫酸二乙酯(diethyl sulfate,DES)对大肠杆菌K235进行诱变。结果表明,通过ARTP诱变筛选得到1株产PSA分子质量较初始菌株提高了36.84%的E.coli K235 4B31。对E.coli K235 4B31进行DES诱变,获得1株产PSA分子质量较初始菌株提高了78.18%的突变菌株E.coli K235 6E61。通过三阶段搅拌转速控制策略最终使得突变菌株E.coli K235 6E61发酵产物PSA分子质量达到430.5 kDa,为目前已报道的最高分子质量PSA。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高霖
朱莉
杨泽林
詹晓北
吴剑荣
关键词:  大肠杆菌  聚唾液酸  高分子质量  发酵    
Abstract: In order to produce polysialic acid (PSA) with high molecular weight, Escherichia coli K235 was treated by atmospheric and room temperature plasma (ARTP) and diethyl sulfate (DES). Mutant 4B31 obtained by ARTP mutagenesis produced PSA with 36.84% higher molecular weight than that of the parent strain. Mutant 6E61 obtained from mutant 4B31 by DES mutagenesis produced PSA with 78.18% higher molecular weight. By using a three-stage agitation speed fermentation, the maximal molecular weight of PSA produced by mutant 6E61 was 430.5 kDa, which was the highest value reported up to date.
Key words:  Escherichia coli    polysialic acid    high molecular weight    fermentation
收稿日期:  2019-01-03                出版日期:  2019-05-25      发布日期:  2019-06-17      期的出版日期:  2019-05-25
基金资助: :863计划子课题(2012AA021505)
作者简介:  硕士研究生(詹晓北教授为通讯作者,E-mail:xbzhan@yahoo.com)。
引用本文:    
高霖,朱莉,杨泽林,等. 高分子质量聚唾液酸生产菌株诱变筛选及其发酵优化[J]. 食品与发酵工业, 2019, 45(10): 22-28.
GAO Lin,ZHU Li,YANG Zelin,et al. Mutagenesis and fermentation optimization of Escherichia coli K235 producing high molecular weight polysialic acid[J]. Food and Fermentation Industries, 2019, 45(10): 22-28.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019842  或          http://sf1970.cnif.cn/CN/Y2019/V45/I10/22
[1] 吴剑荣,詹晓北,郑志永,等.聚唾液酸与唾液酸的研究进展[J].生物加工过程,2007,5(1):20-26.
[2] RUTISHAUSER U. Polysialic acid and the regulation of cell interactions[J].Current Opinion in Cell Biology,1996,8(5):679-684.
[3] MCGUIRE E J, BINKLEY S. The structure and chemistry of colominic acid [J].Biochemistry,1964,3(2):247-251.
[4] 付浩,冯昌雨,詹晓北,等.聚唾液酸-透明质酸接枝聚合物的合成及其在药物缓释载体中的应用[J].合成化学,2016, 24(7):570-575;581.
[5] MURTHY R V, BHARATE P, GADE M, et al. Effect of transition metals on polysialic acid structure and functions[J]. Chem Med Chem,2016, 11(7):667-673.
[6] GREGORIADIS G, JAIN S, PAPAIOANNOU I, et al. Improving the therapeutic efficacy of peptides and proteins: A role for polysialic acids[J].Int J Pharm, 2005,300(1-2):125-130.
[7] LIN B X,QIAO Y, SHI B, et al. Polysialic acid biosynthesis and production in Escherichia coli: Current state and perspectives [J].Appl Microbiol Biotechnol, 2016,100(1):1-8.
[8] 郑志永,詹晓北,朱德强,等. 聚唾液酸和唾液酸寡糖的生物合成及其在营养食品中的应用前景[J].食品科学,2013,34(15):361-368.
[9] COLLEY K J, KITAJIMA K, SATO C. Polysialic acid: Biosynthesis, novel functions and applications[J].Crit Rev Biochem Mol Biol,2014,49(6):498-532.
[10] POLA R, HEINRICH A K, MUELLER T, et al.Passive tumor targeting of polymer therapeutics: In vivo imaging of both the polymer carrier and the enzymatically cleavable drug model[J]. Macromol Biosci, 2016, 16(11):1 577-1 582.
[11] LIU Rui,WANG Yan, MA Yudan,et al. Effects of the molecular weight of PLGA on degradation and drug release in vitro from an mPEG-PLGA nanocarrier[J].Chemical Research in Chinese Universities, 2016, 32(5):848-853.
[12] ZHENG Z Y, WANG S Z, LI G S, et al. A new polysialic acid production process based on dual-stage pH control and fed-batch fermentation for higher yield and resulting high molecular weight product[J].Appl Microbiol Biotechnol, 2013, 97(6):2 405-2 412.
[13] KUFELT O, EL-TAMER A, SEHRING C, et al. Hyaluronic acid based materials for scaffolding via two-photon polymerization[J].Biomacromolecules,2014,15(2):650-659.
[14] BORKE T, NAJBERG M, ILINA P, et al. Hyaluronic acid graft copolymers with cleavable arms as potential intravitreal drug delivery vehicles[J].Macromol Biosci 2018,18(1):1-13.
[15] 杨俊龙,王艳娉,张源,等.透明质酸治疗膝骨关节炎相关机制的研究进展[J].中国疼痛医学杂志,2017,23(6):451-454.
[16] MONDAL S, HARIDAS N, LETHA S S, et al. Development of injectable high molecular weight hyaluronic acid hydrogels for cartilage regeneration[J].Journal of Macromolecular Science,2016, 53(8):507-514.
[17] 于军华.聚唾液酸生产菌种的选育及其发酵工艺的研究[D].无锡:江南大学,2002.
[18] JR O T, COOPER K M J A B. An improved automated periodate-resorcinol method for the determination of sialic acid [J].1983,133(1):233-238.
[19] 李国顺,郑志永,李丹,等. 端基法测定聚唾液酸平均聚合度[J].工业微生物,2012,42(5):19-23.
[20] WILLIS L M, STUPAK J, RICHARDS M R, et al. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in gram-negative pathogens [J].Proc Natl Acad Sci U S A,2013,110(19):7 868-7 873.
[21] DESZO E L, STEENBERGEN S M, FREEDBERG D I, et al. Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus [J].Proc Natl Acad Sci U S A,2005,102(15):5 564-5 569.
[22] 刘金龙.微生物发酵法制备聚唾液酸的研究[D].无锡:江南大学,2011.
[23] PETERSON D C, ARAKERE G, VIONNET J,et al.Characterization and acceptor preference of a soluble meningococcal group C polysialyltransferase[J].J Bacteriol,2011,193(7):1 576-1 582.
[24] FERRERO M A, APARICIO L R. Biosynthesis and production of polysialic acids in bacteria[J].Appl Microbiol Biotechnol, 2010,86(6):1 621-1 635.
[25] BORK K,WEIDEMANN W, BERNECK B,et al. The expression of sialyltransferases is regulated by the bioavailability and biosynthesis of sialic acids[J].Gene Expr Patterns, 2017(23-24):52-58.
[26] JOSEPH D D A, JIAO W, PARKER E J. Arg314 is essential for catalysis by N-acetyl neuraminic acid synthase from Neisseria meningitidis[J].Biochemistry,2013,52(15):2 609-2 619.
[27] BARRIE F C, BLANK L M, RICHARD M, et al.Microbial hyaluronic acid production[J].2005, 66(4):341-351.
[28] RAO Y M, SURESHKUMAR G K.Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism[J].Biotechnol Bioeng,2001,72(1):62-68.
[29] 汤栋,荣绍丰,管世敏,等.氧化胁迫联合UV、DES诱变选育高产、高分子质量透明质酸菌株[J]. 食品工业科技,2015,36(11):136-140.
[30] 陈奕涵,钱悦,侯永泰,等.复合诱变选育大分子质量透明质酸高产菌株[J].中国酿造,2012,31(9):98-101.
[1] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[2] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[3] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[4] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[5] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[6] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[7] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[8] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[9] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[10] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[11] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[12] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[13] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[14] 韩宛芸, 张长懿, 顾泽鹏, 段小雨, 孙庆杰, 邱立忠, 卞希良, 邬应龙, 刘韫滔. 高产β-葡聚糖的黄伞菌株分离、鉴定及其体外模拟消化[J]. 食品与发酵工业, 2021, 47(7): 51-57.
[15] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn