Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (10): 42-47    DOI: 10.13995/j.cnki.11-1802/ts.019905
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
鲁氏接合酵母产葡萄糖醛酸发酵条件优化
李益烽1,2, 方芳1,2*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(食品科学与技术国家重点实验室(江南大学),江苏 无锡,214122)
Optimized fermentation condition for Zygosaccharomyces rouxii producing glucuronic acid
LI Yifeng1,2, FANG Fang1,2*
1(Key Laboratory of Industrial Biotechnology, Ministry of Education (Jiangnan University), Wuxi 214122, China)
2(State Key Laboratory of Food Science and Technology (Jiangnan University), Wuxi 214122, China)
下载:  HTML   PDF (3175KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以1株产葡萄糖醛酸的鲁氏接合酵母ZSR2为研究对象,通过单因素优化确定了鲁氏接合酵母ZSR2发酵产葡萄糖醛酸的最佳发酵条件(发酵培养基含有80 g/L蔗糖、30 g/L大豆蛋白胨,培养基初始pH 5.0,种龄9 h,接种量为3%)。在此条件下,鲁氏接合酵母ZSR2产葡萄糖醛酸水平提高到14.68 g/L,是优化前的3.8倍。此外,通过在发酵过程中采用补料策略,使葡萄糖醛酸产量进一步提高到22.36 g/L,是目前纯菌发酵法产葡萄糖醛酸的最高水平。研究结果可为微生物发酵法生产葡萄糖醛酸的工业化进程奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李益烽
方芳
关键词:  葡萄糖醛酸(glucuronic acid,GlcUA)  鲁氏接合酵母  单因素优化  补料发酵    
Abstract: The fermentation condition for producing GlcUA by Zygosaccharomyces rouxii ZSR2, a GlcUA producer, was optimized by single factor experiments. It was found that the titer of GlcUA under the optimal fermentation condition (the medium contained 80 g/L sucrose, 30 g/L soy peptone, initial pH=5.0, with 3% inoculum and aged for 9 h) was 14.68 g/L, which was 3.8 times higher than that of unoptimized. Besides, the production of GlcUA enhanced to 22.36 g/L by fed-batch fermentation, which was the highest level reported regarding GlucUA production by single strain fermentation. In conclusion, this study lays a foundation for industrial production of GlcUA by microbial fermentation.
Key words:  glucuronic acid(GlcUA)    Zygosaccharomyces rouxii    singer factor optimization    fed-batch fermentation
收稿日期:  2019-01-10                出版日期:  2019-05-25      发布日期:  2019-06-17      期的出版日期:  2019-05-25
基金资助: 国家轻工技术与工程一流学科自主课题(LITE2018-08)
作者简介:  硕士研究生(方芳副教授为通讯作者,E-mail:ffang@jiangnan.edu.cn)
引用本文:    
李益烽,方芳. 鲁氏接合酵母产葡萄糖醛酸发酵条件优化[J]. 食品与发酵工业, 2019, 45(10): 42-47.
LI Yifeng,FANG Fang. Optimized fermentation condition for Zygosaccharomyces rouxii producing glucuronic acid[J]. Food and Fermentation Industries, 2019, 45(10): 42-47.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.019905  或          http://sf1970.cnif.cn/CN/Y2019/V45/I10/42
[1] HOU Z, LIU Y, ZHANG X X, et al. Synthesis of glucuronic acid derivatives via the efficient and selective removal of a C6 methyl group[J]. Tetrahedron Letters, 2016, 5(5):423-426.
[2] MOON T S, YOON S H, LANZA A M, et al. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 2009, 75(3): 589-595.
[3] JAYABALAN R, SUBATHRADEVI P, MARIMUTHU S, et al. Changes in free-radical scavenging ability of Kombucha tea during fermentation[J]. Food Chemistry, 2008, 109(1): 227-234.
[4] DELATTRE C, MICHAUD P, LION J M, et al. Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain[J]. Journal of Biotechnology, 2005, 118(4): 448-457.
[5] KOIZUMI S. Large-scale production of oligosaccharides using bacterial functions[J]. Trends in Glycoscience and Glycotechnology, 2010, 15(82): 65-74.
[6] NGUYEN N K, NGUYEN H T, LE P H. Effects of Lactobacillus casei and alterations in fermentation conditions on biosynthesis of glucuronic acid by a Dekkera bruxellensis-Gluconacetobacter intermedius Kombucha symbiosis model system[J]. Food Biotechnology, 2015, 29(4): 356-370.
[7] VINA I, SEMJONOVS P, LINDE R, et al. Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations[J]. International Journal of Research and Reviews in Applied, 2013, 14(1): 17-25.
[8] CIMINI D, ROSA M D, SCHIRALDI C. Production of glucuronic acid-based polysaccharides by microbial fermentation for biomedical applications[J]. Biotechnology Journal, 2012, 7(2): 237-250.
[9] 陈辉, 和娴娴. 葡萄糖醛酸及其内酯制备方法的研究进展[J]. 山东食品发酵, 2011(1): 6-8.
[10] 周锡堂, 林培喜, 胡智华. 葡醛内酯生产工艺改进研究[J]. 桂林工学院学报,2003(1):132-135.
[11] 郭耀基,王晓峰,唐黎华. 采用二次内酯化方法从葡醛内酯生产废液中回收产品[J]. 无锡轻工大学学报,2004,23(2):67-70;75.
[12] 房媛. 葡萄糖醛酸内酯清洁生产[D]. 西安:陕西科技大学,2013.
[13] SHIUE E, PRATHER K L. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport[J]. Metabolic Engineering, 2014, 22: 22-31.
[14] MOON T S, DUEBER J E, SHIUE E, et al. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli[J]. Metabolic Engineering, 2010, 12(3): 298-305.
[15] 和娴娴. 葡萄糖醛酸产生菌的筛选及培养条件研究[D]. 石家庄:河北科技大学, 2012.
[16] PETROVIE S E, MALBASA R V, VERAC R M. Biosynthesis of glucuronic acid by means of tea fungus[J]. Molecular Nutrition and Food Research, 2010, 44(2): 138-139.
[17] BLANC P J. Characterization of the tea fungus metabolites[J]. Biotechnology Letters, 1996, 18(2): 139-142.
[18] NGUYEN N K, DONG N T N, NGUYEN H T, et al. Lactic acid bacteria: promising supplements for enhancing the biological activities of Kombucha[J]. Springerplus, 2015, 4(1): 91.
[19] BEIGMOHAMMADI F, KARBASI A, BEIGMOHAMMADI Z. Production of high glucuronic acid level in Kombucha beverage under the influence environmental condition[J]. Journal of Food Technology and Nutrition, 2010, 2(26):30-38.
[20] YANG Z, FENG Z, JI B, et al. Symbiosis between microorganisms from Kombucha and Kefir: Potential significance to the enhancement of Kombucha function[J]. Applied Biochemistry and Biotechnology, 2010, 160(2): 446-455.
[21] NGUYEN N K, DONG N T N, LE P H, et al. Evaluation of the glucuronic acid production and other biological activities of fermented sweeten-black tea by Kombucha layer and the co-culture with different Lactobacillus sp. strains[J]. International Journal of Modern Engineering Research, 2014, 4(1): 12-17.
[22] JAYABALAN R, MARIMUTHU S, SWAMINATHAN K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation[J]. Food Chemistry, 2007, 102(1): 392-398.
[23] FILIPPIS F D, TROISE A D, VITAGLIONE P, et al. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation[J]. Food Microbiology, 2018, 73: 11-16.
[24] 范艳群,许建中,徐询,等. 离子排斥色谱法同时测定葡萄糖醛酸和内酯及葡萄糖醛酸稳定性[J]. 应用化学, 2014, 31(4): 450-454.
[25] 国家食品药品监督管理总局. GB 5009.5—2016, 食品中蛋白质的测定[S]. 北京:中国标准出版社,2016.
[26] 宋江. 酱油酿造用鲁氏接合酵母菌的生长及其产香气成分研究[D]. 长沙:湖南农业大学, 2013.
[1] 刘爽, 张倩, 杜船, 周韬, 赵佳豪, 石磊, 王春玲. 酱油发酵用菌鲁氏接合酵母的安全性[J]. 食品与发酵工业, 2021, 47(3): 66-71.
[2] 刘佳乐, 周朝晖, 李铁桥, 卢丽玲, 方芳. 酱油发酵过程强化嗜盐四联球菌对酱油品质的影响[J]. 食品与发酵工业, 2020, 46(17): 99-106.
[3] 蔡文, 曾伟主, 周景文. 氧化葡萄糖酸杆菌产2-酮基-D-葡萄糖酸的发酵过程优化[J]. 食品与发酵工业, 2019, 45(11): 40-45.
[4] 吴燕, 梁向峰, 刘会洲, 等. 纳豆激酶分批补料发酵的研究[J]. 食品与发酵工业, 2018, 44(1): 126-.
[5] 张阳,伍时华,赵东玲,张健,易弋,黄翠姬. 基于亚甲基蓝还原法确定酒精分批补料发酵的最佳补料时间[J]. 食品与发酵工业, 2017, 43(8): 40-.
[6] 丁含,梁赢,朱莉,高敏杰,林莉,詹晓北. 发酵液中水溶性热凝胶提取工艺的优化[J]. 食品与发酵工业, 2017, 43(6): 109-.
[7] 王小兰,穆晓清,徐岩,聂尧. 重组大肠杆菌产普鲁兰酶发酵条件优化[J]. 食品与发酵工业, 2015, 41(7): 24-.
[8] 孙菲. 脂肪酶抑制剂Lipstatin的发酵罐发酵工艺优化[J]. 食品与发酵工业, 2014, 40(09): 63-67.
[9] 肖尚, 孙立洁, 姚黎明, 吴金勇, 卢诗瑶, 李俊, 姚建铭,. 补料分批发酵对隐甲藻生长和积累DHA的影响[J]. 食品与发酵工业, 2013, 39(09): 31-35.
[10] 王金,蔡谨,施周铭,黄磊,徐志南. 以木薯渣水解液为碳源固定化发酵产丁酸工艺的研究[J]. 食品与发酵工业, 2012, 38(07): 21-25.
[11] 黄静,史建明,霍文婷,徐庆阳,谢希贤,陈宁. 氮源对L-色氨酸发酵的影响[J]. 食品与发酵工业, 2011, 37(05): 21-25.
[12] 徐达. L-鸟氨酸补料分批发酵的研究[J]. 食品与发酵工业, 2011, 37(04): 117-119.
[13] 孙梅,匡群,施大林,刘淮,胡凌红,陈秋红,陆茂林. 耐氨米根霉的分批补料发酵及发酵动力学初探[J]. 食品与发酵工业, 2005, 31(12): 30-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn