Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (21): 229-235    DOI: 10.13995/j.cnki.11-1802/ts.020240
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
QuEChERS-气相色谱分析厦门海域鱼体中有机氯类农药残留特征及风险评价
毕思远1,3,4, 曹建涛2, 李保玲1, 朱志强1*, 曹涛3, 李森4
1 (哈尔滨体育学院,黑龙江 哈尔滨,150008)
2 (济南市农产品质量检测中心,山东 济南,250000)
3 (广东省检迅检测科技有限公司,广东 东莞,523843)
4 (深圳市汇知科技有限公司,广东 深圳,518000)
Determination and risk assessment of organochlorine pesticides in marine fishfrom Xiamen sea area by QuEChERS combined with gas chromatography
BI Siyuan1,3,4, CAO Jiantao2, LI Baoling1, ZHU Zhiqiang1*, CAO Tao3, LI Sen4
1 (Harbin Sport University, Harbin 150008, China)
2 (Test Center for Agri-products Quality of Jinan, Jinan 250000, China)
3 (Guangdong Quick Test Technologies Co. Ltd., Dongguan 523843, China)
4 (Shenzhen Huizhi Technologies Co.Ltd., Shenzhen 518000, China)
下载:  HTML   PDF (1521KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以厦门海域10种鱼类作为研究对象,利用QuEChERS-气相色谱分析鱼肉中有机氯农药(organochlorine pesticides, OCPs)的残留水平和特征,并探讨其可能的健康风险。样品经V(正己烷)∶V(丙酮)=1∶1提取,经400 mg PSA,150 mg C18和900 mg无水MgSO4净化,采用气相色谱定性和定量分析,结合气相色谱-质谱法确认。各OCPs在1~50 μg/L质量浓度范围内线性相关系数均大于0.998 8,回收率为83.2%~103.5%,精密度为4.8%~12.1%,检出限0.01~0.09 μg/kg;10种鱼类均有OCPs检出,含量在5.532~22.174 μg/kg之间,带鱼和鳓鱼的OCPs含量最高,分别为22.174 μg/kg和19.910 μg/kg;P’P’-DDD、P’P’-DDE和β-HCH是最主要的OCPs污染物;各异构体的含量水平和组成特征表明该水域的OCPs大部分来自早期农药使用残留,但疑似有三氯杀螨醇引入的DDT污染;估计每日膳食摄入量(estimated daily intake, EDI)均远低于国标规定值。QuEChERS可以应用于大批量水产品中OCPs的检测分析,厦门海域的水环境近期受OCPs污染较小,食用该水域的鱼类产生OCPs危害的风险较低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕思远
曹建涛
李保玲
朱志强
曹涛
李森
关键词:  有机氯农药  QuEChERS  气相色谱  风险评估    
Abstract: With 10 fish species in Xiamen area as the research objects, the residue dose and characteristics of organochlorine pesticides (OCPs) in fish were analyzed by QuEChERS-gas chromatography, and their possible health risks were discussed. Fish muscles were extracted with hexane and acetone (1∶1) homogenate and purified with 400 mg PSA, 150 mg C18 and 900 mg magnesium sulfate, followed by GC-ECD and GC-MS analysis. The results showed that the calibration curves were linear in the range of 1-50 ìg/L for each OCP, with correlation coefficients all above 0.998 8, the average recoveries of 83.2%-103.5%, the RSDs of 4.8-12.1%, and the detection limits of 0.01-0.09 μg/kg. Meanwhile, OCPs were detected in all 10 fish species, with the concentrations ranging from 5.532 μg/kg to 22.174 μg/kg. The concentrations of OCPs in Trichiurus lepturus and Ilisha elongata Bennett were the highest, reaching 22.174 μg/kg and 19.910 μg/kg, respectively. P′P′-DDD, P′P′-DDE and â-HCH were the main pollutants. The contents and composition of the isomers indicated that most of the OCPs in Xiamen area were come from early pesticide residues, but there was a suspected contamination of DDT caused by the degradation of dicofol. However, the EDI was far lower than daily food intake from the national standard. Therefore, QuEChERS can be applied to the detection of OCPs in marine fish, and the water environment in Xiamen sea area has been less polluted by OCPs recently, indicating low risk of OCPs by fish consumption.
Key words:  organochlorine pesticides(OCPs)    QuEChERS    gas chromatography(GC)    Risk assessment
收稿日期:  2019-02-19                出版日期:  2019-11-15      发布日期:  2019-11-15      期的出版日期:  2019-11-15
基金资助: 国家博士后基金面上项目二等资助(2017M611382)
作者简介:  博士,副研究员(朱志强教授为通讯作者,E-mail:alix_bi0129@foxmail.com)。
引用本文:    
毕思远,曹建涛,李保玲,等. QuEChERS-气相色谱分析厦门海域鱼体中有机氯类农药残留特征及风险评价[J]. 食品与发酵工业, 2019, 45(21): 229-235.
BI Siyuan,CAO Jiantao,LI Baoling,et al. Determination and risk assessment of organochlorine pesticides in marine fishfrom Xiamen sea area by QuEChERS combined with gas chromatography[J]. Food and Fermentation Industries, 2019, 45(21): 229-235.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.020240  或          http://sf1970.cnif.cn/CN/Y2019/V45/I21/229
[1] 张家泉, 祁士华,邢新丽,等. 闽江干流沿岸土壤及河口沉积柱中有机氯农药分布特征[J]. 环境科学, 2011, 32(3):673-679.
[2] 王翀. 宁波、舟山群岛经济海产品中有机氯农药的残留、来源及生态风险研究[D]. 杭州:浙江工业大学, 2012.
[3] 徐彪, 孙丙华,姜珊, 等. 巢湖5种鱼类肌肉部位有机氯农药分布特征研究及风险评估[J]. 生物学杂志, 2016, 33(5):19-22.
[4] 丘耀文. 大亚湾海域典型有机氯农药生物累积特征及变化因素研究[J]. 海洋学报, 2007, 29(2):51-58.
[5] JIANG Q T, LEE T K M, CHEN K, et al. Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China[J]. Environmental Pollution, 2005, 136(1):0-165.
[6] 张春辉, 吴永贵,杨少博,等. 广东沿海3种食用鱼中有机氯农药的残留特征及风险评价[J]. 贵州农业科学, 2015, 43(11):174-178.
[7] PANDIT G G, SAHU S K, SHARMA S, et al. Distribution and fate of persistent organochlorine pesticides in coastal marine environment of Mumbai[J]. Environment International, 2006, 32(2):240-243.
[8] 张晓岚, 顾越,李晓静,等. 淀山湖表层水、沉积物和鱼体中有机氯农药的时空变化及人体暴露风险[J]. 上海大学学报(自然科学版), 2016, 22(2):122-130.
[9] 曹方方, 于建钊,费金岩,等. 气相色谱-双柱双电子捕获检测器测定鱼肉中的有机氯农药[J]. 理化检验(化学分册), 2017, 53(3):258-262.
[10] NORLI H R, CHRISTIANSEN A, DERIBE E. Application of QuEChERS method for extraction of selected persistent organic pollutants in fish tissue and analysis by gas chromatography mass spectrometry.[J]. Journal of Chromatography A, 2011, 1218(41):7 234-7 241.
[11] ELHAM J, FATEMEH A, MANSOUR F. Evaluation of Quechers sample preparation and GC mass spectrometry method for the determination of 15 pesticide residues in tomatoes used in salad production plants:[J]. Iranian Journal of Public Health, 2016, 45(2):230-238.
[12] TIRYAKI O. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties[J]. Journal of Environmental Science & Health,part.b, Pesticides Food Contaminants & Agricultural Wastes, 2016, 51(10):722-729.
[13] ISLAM A K M M, HONG S M, LEE H S, et al. Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC-ESI-MS/MS, GC-MS and UPLC-DAD[J]. Journal of Food Science & Technology, 2018,55(10):3 930-3 938.
[14] BILEHAL D C, CHETTI M B, DEEPA G T, et al. Multiresidue pesticide analysis using QuEChERS method in vegetable samples by ultra-performance liquid chromatography[J]. Analytical Chemistry Letters, 2016, 6(6):688-696.
[15] BORDIN A B, MINETTO L, FILHO I D N, et al. Determination of pesticide residues in whole wheat flour using modified QuEChERS and LC-MS/MS[J]. Food Analytical Methods, 2016, 10(1):1-9.
[16] CHO J, LEE J, LIM C U, et al. Quantification of pesticides in food crops using QuEChERS approaches and GC-MS/MS[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2016, 33(12):1 803-1 816.
[17] STEINIGER D, LU G, BUTLER J, et al. Determination of multiresidue pesticides in green tea by using a modified QuEChERS extraction and ion-trap gas chromatography/mass spectrometry[J]. Journal of Aoac International, 2010, 93(4):1 169-1 179.
[18] WU C C. Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry[J]. Food Chemistry, 2017, 229:580-587.
[19] HE Z, WANG Y, WANG L, et al. Determination of 255 pesticides in edible vegetable oils using QuEChERS method and gas chromatography tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2016, 409(4):1 017-1 030.
[20] STREMEL T R D O, DOMINGUES C E, ZITTEL R, et al. Development, validation and matrix effect of a QuEChERS method for the analysis of organochlorine pesticides in fish tissue[J]. Journal of Environmental Science and Health, Part B, 2018:53(4):246-254.
[21] WATANABE K H, DESIMONE F W, THIYAGARAJAH A, et al. Fish tissue quality in the lower Mississippi River and health risks from fish consumption[J]. Science of the Total Environment, 2003, 302(1):109-126.
[22] NICKLAS PAXÉUS. Organic pollutants in the effluents of large wastewater treatment plants in Sweden[J]. Water Research, 1996, 30(5):0-1 122.
[23] BRUGGEMAN W A. Reversed-phase thin-layer chromatography of polynuclear aromatic hydrocarbons and chlorinated biphenyls relationship with hydrophobicity as measured by aqueous solubility and octanol-water partition coefficient[J]. Journal of Chromatography A, 1982, 238(2):335-346.
[24] QIU X, ZHU T, LI J, et al. Organochlorine pesticides in the air around the Taihu Lake, China[J]. Environ.Sci.Technol, 2004, 38(5):1 368-1 374.
[25] ZHOU R, ZHU L, YANG K, et al. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China[J]. Journal of Hazardous Materials, 2006, 137(1):68-75.
[26] MACKAY D. Correlation of bioconcentration factors[J]. Environmental Science & Technology, 1982, 16(5):274-278.
[27] WALKER K, VALLERO D A, LEWIS R G. Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment[J]. Environmental Science & Technology, 1999, 33(24):4 373-4 378.
[28] KALBITZ, POPP, GEYER, et al. β-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter[J]. Science of the Total Environment, 1997, 204(1):37-48.
[29] UNYIMADU J P, OSIBANJO O, BABAYEMI J O. Polychlorinated biphenyls (PCBs) in River Niger, Nigeria: Occurrence, distribution and composition profiles[J]. Toxicology & Industrial Health, 2017, 34(1):54-67.
[30] UNYIMADU J P, OSIBANJO O, BABAYEMI J O. Selected persistent organic pollutants (POPs) in water of River Niger: occurrence and distribution[J]. Environmental Monitoring & Assessment, 2017, 190(1):6.
[31] IWATA H, TANABE S, SAKAI N, et al. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate[J]. Environmental Science & Technology, 1993, 27(6):495-499.
[32] WILLETT K L, ULRICH E M, HITES R A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers[J]. Environmental Science & Technology, 1998, 32(15):2 197-2 207.
[33] AISLABIE J M, RICHARDS N K, BOUL H L. Microbial degradation of DDT and its residues—A review[J]. New Zealand Journal of Agricultural Research, 1997, 40(2):14.
[34] BAXTER R M. Reductive dechlorination of certain chlorinated organic compounds by reduced hematin compared with their behaviour in the environment[J]. Chemosphere, 1990, 21(4):451-458.
[35] QIAN Y, ZHENG M, ZHANG B, et al. Determination and assessment of HCHs and DDTs residues in sediments from Lake Dongting, China[J]. Environmental Monitoring & Assessment, 2006, 116(1-3):157-167.
[36] GUO Y, YU H Y, ZENG E Y. Occurrence, source diagnosis, and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta, South China: a review.[J]. Environmental Pollution, 2009, 157(6):1 753-1 763.
[37] MA X, YONG R, JIAN G, et al. Concentrations and inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in watershed soils in the Pearl River Delta, China[J]. Environmental Monitoring & Assessment, 2008, 145(1-3):453-464.
[38] DOONG R A, SUN Y C, LIAO P L, et al. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan[J]. Chemosphere, 2002, 48(2):237-246.
[39] SCHUPHAN I, SAJKO B, BALLSCHMITER K. The chemical and photochemical degradation of the cyclodien-insecticides aldrin, dieldrin, endosulfan and other hexachloronorbornene derivatives[J]. Zeitschrift Für Naturforschung B, 1972, 27(2):147-156..
[40] UNYIMADU J P, OSIBANJO O, BABAYEMI J O. Levels of organochlorine pesticides in brackish water fish from Niger River, Nigeria[J]. Journal of Environmental & Public Health, 2018, 2018(8):1-9.
[41] 汤清清. 泉州湾鱼体内典型持久性有机污染物水平与食用安全性研究[D]. 厦门:集美大学, 2014.
[1] 姚文生, 蔡莹暄, 刘登勇, 张明成, 马双玉, 杨晶, 苟紫慧, 张浩. 基于HS-GC-IMS和HS-SPME-GC-MS的熏鸡腿肉挥发性风味成分分析[J]. 食品与发酵工业, 2021, 47(9): 253-261.
[2] 胡雪, 李锦松, 唐永清, 张良, 钱宇, 赵金松. 基于GC-MS结合化学计量学的浓香型白酒分类方法[J]. 食品与发酵工业, 2021, 47(8): 212-217.
[3] 坚乃丹, 李文丽, 张祝莉, 朱霞, 鲜学海, 牛伊宁. 基于气相色谱-串联质谱技术测定植物组织中糖与糖醇[J]. 食品与发酵工业, 2021, 47(8): 224-229.
[4] 范金平, 张盈, 魏进, 罗世霞, 段婷婷. QuEChERS结合超高效液相色谱串联质谱法测定花椒中烯效唑残留量及贮藏稳定性[J]. 食品与发酵工业, 2021, 47(8): 230-235.
[5] 曹栩菡, 黄小军, 叶麟, 潘才惠. QuEChERS-超滤净化结合GC-QQQ测定酿酒大曲中多种农药残留量[J]. 食品与发酵工业, 2021, 47(7): 238-243.
[6] 李晓朋, 曾欢, 林柳, 陶宁萍, 徐逍, 丛建华. 不同煎炸用油制备河豚鱼汤挥发性风味成分的差异性[J]. 食品与发酵工业, 2021, 47(7): 251-259.
[7] 黄丕苗, 王智荣, 陈湑慧, 杨兵, 施月, 阚建全. 迷迭香提取物对白鲢鱼肉腥味的影响及其脱腥条件优化[J]. 食品与发酵工业, 2021, 47(6): 176-183.
[8] 袁国亿, 王春晓, 何宇淋, 邱树毅. 酶标仪比色法检测浊米酒中高级醇含量[J]. 食品与发酵工业, 2021, 47(6): 221-227.
[9] 蒋彰, 周志磊, 姬中伟, 韩吉臣, 毛健, 周哲敏. 即墨黄酒煮糜工艺对挥发性物质的影响[J]. 食品与发酵工业, 2021, 47(5): 86-91.
[10] 乐彩虹, 陶宁萍, 徐逍. 暗纹东方鲀鱼皮胶原蛋白肽脱苦前后苦味物质的变化[J]. 食品与发酵工业, 2021, 47(4): 87-95.
[11] 毛永强, 李彦虎, 贠建民, 何奎, 王睿, 武淑娟. 传统陇西腊肉制作过程中挥发性风味物质变化分析[J]. 食品与发酵工业, 2021, 47(4): 144-152.
[12] 戚军, 陈亚, 徐颖, 熊国远, 梅林. 超声辅助炖制对黄羽鸡汤香味的影响[J]. 食品与发酵工业, 2021, 47(4): 153-158.
[13] 钟冬莲, 莫润宏, 王蕤, 喻宁华, 沈丹玉, 汤富彬. 反相聚合物固相萃取-气相色谱-质谱法测定植物油中角鲨烯和四种植物甾醇[J]. 食品与发酵工业, 2021, 47(4): 231-236.
[14] 韦杰, 尹雅洁, 江伟, 宋层业, 魏灵, 廖志力, 韩兴林. 七种竹叶品种挥发性化合物的统计学评价[J]. 食品与发酵工业, 2021, 47(3): 181-187.
[15] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn