Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (18): 222-227    DOI: 10.13995/j.cnki.11-1802/ts.020347
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
傅里叶变换红外光谱结合化学计量学用于山茶油中掺杂大豆油的鉴别
韩建勋1,2,孙瑞雪2,3,陈颖2*,孙崇德1*,温志刚4
1.浙江大学 农业与生物技术学院,浙江 杭州,310058;
2.中国检验检疫科学研究院农产品安全研究中心,北京,100176;
3.中国农业大学 食品与营养工程学院,北京,100083;
4.赣州市产品质量监督检验所,江西 赣州,341000
Discrimination of soya bean oil in adulterated camellia oil by FTIR spectroscopy combined with chemometrics
HAN Jianxun1,2,SUN Ruixue2,3,CHEN Ying2*,SUN Chongde1*,WEN Zhigang4
1. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
2.Agro-product Safety Research Center, Chinese Academy of Inspection and Quarantine,Beijing 100176, China;
3.College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
4.Ganzhou Quality Supervision and Inspection Institute, Ganzhou 341000, China
下载:  HTML   PDF (1432KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立快速定性鉴别山茶油与大豆油、菜籽油和玉米油,以及定量检测山茶油中掺杂大豆油的傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)检测方法。采用FTIR光谱技术,对比山茶油与大豆油、玉米油、菜籽油红外光谱中2个特征峰(1 122 cm-1与1 096 cm-1)的峰高差异,可快速定性区分山茶油与其他3种食用油,并能鉴别掺入大豆油含量(质量分数)在30%及以上的山茶油;利用4种食用油的1 464~722 cm-1范围内的指纹光谱,结合PCA算法,建立的定性判别模型可区分山茶油及其他3种食用油,并结合PLSR算法,构建了检测山茶油中掺入大豆油的定量模型,其中校正集的RMSECV值为0.032 0,验证集的RMSEP值为0.029 7,校正集和验证集的R2值均能达到0.99,最低检测限达1%(质量分数)。结果表明,所建立的山茶油中掺杂大豆油的FTIR光谱检测方法简便、灵敏、准确,为市场筛查掺假山茶油的快速鉴别提供了技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩建勋
孙瑞雪
陈颖
孙崇德
温志刚
关键词:  傅里叶变换红外光谱  山茶油  大豆油  主成分分析  偏最小二乘回归  定量检测    
Abstract: The aim of our research was not only to qualitatively identify camellia oil, soya bean oil, rapeseed oil and corn oil, but also to quantitatively detect the soya bean oil in adulterated camellia oil. In this study, a FTIR method was investigated for discriminating camellia oil, soya bean oil, corn oil and rapeseed oil by comparison of two characteristic peaks height (1 122 cm-1, 1 096 cm-1) among those four edible oils. And it could identify pure camellia oil and camellia oil adulterated with soya bean oil(≥30%, w/w). In conjunction with PCA algorithm, a discrimination model was also developed for qualitative detecting camellia oils and other edible oils based on analyzing the FTIR fingerprint spectra in the range of 1 464~722 cm-1. After that, for quantitative determination of soya bean oil in adulterated camellia oil, a PLSR model with the detection limit of 1% (w/w) was provided. And it obtained RMSECV value of 0.032 0 for calibration sets and RMSEP value of 0.029 7 for validation sets. R2 of both sets could reach 0.99. In conclusion, with the characteristic of convenience, sensitivity, and accuracy, the FTIR spectroscopic methods established above has the capability for rapid verification of camellia oil adulteration in the edible oil market.
Key words:  FTIR spectroscopy    camellia oil    soya bean oil    principal component analysis    partial least square regression    quantitative detection
               出版日期:  2019-09-25      发布日期:  2019-11-06      期的出版日期:  2019-09-25
基金资助: 基本科研业务费专项资金资助项目(2017JK043);国家重点研发计划项目(2016YFD0401104)
作者简介:  博士,副研究员(陈颖为通讯作者)。
引用本文:    
韩建勋,孙瑞雪,陈颖,等. 傅里叶变换红外光谱结合化学计量学用于山茶油中掺杂大豆油的鉴别[J]. 食品与发酵工业, 2019, 45(18): 222-227.
HAN Jianxun,SUN Ruixue,CHEN Ying,et al. Discrimination of soya bean oil in adulterated camellia oil by FTIR spectroscopy combined with chemometrics[J]. Food and Fermentation Industries, 2019, 45(18): 222-227.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.020347  或          http://sf1970.cnif.cn/CN/Y2019/V45/I18/222
[1] 严晓丽, 徐昕. 气相色谱法鉴别掺假山茶油定性及定量研究[J]. 食品工程, 2011(2):47-49.
[2] 吴翠蓉, 柴振林,杨柳,等. SPME-GC-MS测定山茶油掺假[J]. 江苏农业科学, 2015(4):305-308.
[3] 朱绍华, 张帆,王美玲,等. 稳定同位素比质谱法鉴别茶油中掺杂玉米油研究[J]. 中国食物与营养, 2013, 19(3):8-10.
[4] SHI T, ZHU M, CHEN Y, et al. 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils [J]. Food Chemistry, 2017, 242:308.
[5] 海铮, 王俊. 基于电子鼻山茶油芝麻油掺假的检测研究[J]. 中国粮油学报, 2006, 21(3):192-197.
[6] WENG R H, WENG Y M, CHEN W L. Authentication of camellia oleifera abel oil by near infrared fourier transform raman spectroscopy[J]. Journal of the Chinese Chemical Society, 2006, 53(3):597-603.
[7] 胡月芳, 黄志强,王灿玲. 紫外光谱法结合化学计量法鉴别茶油掺假的研究[J]. 广东农业科学, 2015, 42(23):112-116.
[8] 张菊华, 朱向荣,尚雪波,等. 近红外光谱结合偏最小二乘法用于纯茶油中掺杂菜籽油和大豆油的定量分析[J]. 食品工业科技, 2012, 33(3):334-336.
[9] WANG L, LEE F S C, WANG X, et al. Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR [J]. Food Chemistry, 2006, 95(3):529-536.
[10] 褚璇, 王伟,赵昕,等. 近红外光谱和特征光谱的山茶油掺假鉴别方法研究[J]. 光谱学与光谱分析, 2017, 37(1):75-79.
[11] 温珍才, 孙通,耿响,等. 可见/近红外联合UVE-PLS-LDA鉴别压榨和浸出山茶油[J]. 光谱学与光谱分析, 2013, 33(9):2 354-2 358.
[12] ROHMAN A, MAN Y B C, YUSOF F M. The use of FTIR spectroscopy and chemometrics for rapid authentication of extra virgin olive oil[J]. Journal of the American Oil Chemists Society, 2014, 91(2):207-213.
[13] OZREN JOVIC′, ALAN JOVC′. FTIR-ATR adulteration study of hempseed oil of different geographic origins [J]. Journal of Chemometrics, 2017, e2938:1-9.
[14] LI B N, WANG H X, ZHAO Q J, et al. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study [J]. Food Chemistry, 2015, 81:25-30.
[15] BRIANDA E, DAVID P, SAYO O F. Determination of adulterated neem and flaxseed oil compositions by FTIR spectroscopy and multivariate regression analysis [J]. Food Control, 2016, 68:303-309.
[16] 朱启思, 朱丽琼,钟国才,等. 傅里叶变换红外光谱法快速鉴别油茶籽油掺伪[J]. 粮食科技与经济, 2015, 40(3):37-39.
[17] 陈佳, 于修烛,刘晓丽,等. 基于傅里叶变换红外光谱的食用油质量安全检测技术研究进展[J]. 食品科学, 2018, 39(7):270-277.
[18] 贺凡, 郭芹,顾丰颖,等. 11种品牌玉米油脂肪酸及异构体的主成分分析[J]. 现代食品科技, 2017(2):190-196.
[19] 彭思敏, 吴卫国,黄天柱. 基于脂肪酸含量变化的茶油掺假判别[J]. 粮食科技与经济, 2013,38(1):31-33;39.
[20] 艾芳芳, 宾俊,钟丹,等. 油茶籽油与不同植物油脂肪酸成分的分析比较[J]. 中国油脂, 2013, 38(3):77-80.
[21] JAISWAL P, JHA S N, KAUR J, et al. Rapid detection and quantification of soya bean oil and common sugar in bovine milk using attenuated total reflectance-fourier transform infrared spectroscopy [J]. International Journal of Dairy Technology, 2017, 70:1-9.
[22] 刘玲玲, 武彦文,张旭,等.傅里叶变换红外光谱结合模式识别法快速鉴别食用油的真伪[J]. 化学学报, 2012, 70(8):995-1 000.
[23] AKIN,GNL KARUK ELMAS,SKRIYE NIHAN ARSLAN,et al. Chemometric classification and quantification of cold pressed grape seed oil in blends with refined soybean oils using attenuated total reflectance-mid infrared (ATR-MIR) spectroscopy[J]. LWT - Food Science and Technology, 2019, 100:126-137.
[24] ALI H, MUHAMMAD S, ANSER M R, et al. Validation of fluorescence spectroscopy to detect adulteration of edible oil in extra virgin olive oil by applying chemometrics[J]. Applied Spectroscopy, 2018,72(9):1 371-1 379.
[1] 占敏宣, 魏清江, 林雄, 李宏祥, 陈金印, 马巧利. PCA再分析采收成熟度对桃溪蜜柚贮藏品质变化模式的影响[J]. 食品与发酵工业, 2021, 47(9): 183-190.
[2] 杨玉宁, 陈松树, 高尔刚, 李园园, 潘秀珍, 刘红昌, 辛雪辉. 基于主成分分析的木通属植物果实品质评价[J]. 食品与发酵工业, 2021, 47(9): 191-200.
[3] 郑涛, 苏柯星, 丛桂芝, 陈明杰, 孙丙寅, 刘淑明. 树上干杏和梅杏果实品质分析与综合评价[J]. 食品与发酵工业, 2021, 47(9): 201-207.
[4] 姚文生, 蔡莹暄, 刘登勇, 张明成, 马双玉, 杨晶, 苟紫慧, 张浩. 基于HS-GC-IMS和HS-SPME-GC-MS的熏鸡腿肉挥发性风味成分分析[J]. 食品与发酵工业, 2021, 47(9): 253-261.
[5] 张敏, 余佶, 王琪琰, 张锦程, 游湘淘, 姚茂君, 麻成金. 藤茶感官特征定量描述分析与风味轮构建[J]. 食品与发酵工业, 2021, 47(8): 134-139.
[6] 刘丹丹, 李昕沂, 罗晶晶, 王启会, 罗静, 王海燕. 超高压微射流均质技术对猕猴桃果酒品质的影响[J]. 食品与发酵工业, 2021, 47(8): 165-169.
[7] 胡雪, 李锦松, 唐永清, 张良, 钱宇, 赵金松. 基于GC-MS结合化学计量学的浓香型白酒分类方法[J]. 食品与发酵工业, 2021, 47(8): 212-217.
[8] 郭金喜, 马燕, 范田丽, 杨光勇, 马君刚. 微波消解-电感耦合等离子体串联质谱法测定新疆黑枸杞红酒中微量元素的主成分分析[J]. 食品与发酵工业, 2021, 47(8): 243-249.
[9] 张迪, 吉宏武, 陈浩, 刘书成, 毛伟杰. 脂质对凡纳滨对虾热风干制品香气特性的影响[J]. 食品与发酵工业, 2021, 47(7): 189-196.
[10] 李晓朋, 曾欢, 林柳, 陶宁萍, 徐逍, 丛建华. 不同煎炸用油制备河豚鱼汤挥发性风味成分的差异性[J]. 食品与发酵工业, 2021, 47(7): 251-259.
[11] 张维, 付复华, 罗赛男, 赖灯妮, 朱向荣, 张群. 湖南红心猕猴桃品种品质评价及综合分析[J]. 食品与发酵工业, 2021, 47(5): 201-210.
[12] 杨学芳, 张继光, 吴万富, 吕世懂. 南瓜籽油中角鲨烯含量及特征指标比较[J]. 食品与发酵工业, 2021, 47(5): 217-223.
[13] 金文刚, 陈小华, 耿敬章, 姜鹏飞, 裴金金. 基于气相-离子迁移谱分析不同产地“汉中仙毫”气味指纹差异[J]. 食品与发酵工业, 2021, 47(5): 231-237.
[14] 张彦聪, 李昀哲, 张军, 唐磊. 柠檬椰汁复合果酒的工艺研究及香气特征分析[J]. 食品与发酵工业, 2021, 47(4): 173-181.
[15] 韦杰, 尹雅洁, 江伟, 宋层业, 魏灵, 廖志力, 韩兴林. 七种竹叶品种挥发性化合物的统计学评价[J]. 食品与发酵工业, 2021, 47(3): 181-187.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn