Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (18): 120-129    DOI: 10.13995/j.cnki.11-1802/ts.021040
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
氯化钙-无花果蛋白酶-猕猴桃蛋白酶复合嫩化剂体系改善兔肉嫩度和保水性的工艺优化
李明奇1,贺稚非1,2,李少博1,李冉冉1,李洪军1,2*
1.西南大学 食品科学学院,重庆,400716)   2(西南大学,重庆市特色食品工程技术研究学院,重庆,400716
Optimization of calcium chloride, ficin and kiwifruit protease tenderization system to improve the tenderness and water holding capability of rabbit meat
LI Mingqi1, HE Zhifei1,2, LI Shaobo1, LI Ranran1, LI Hongjun1,2*
1. College of Food Science, Southwest University, Chongqing 400716, China;
2.Chongqing Engineering Research Center of Regional Food, Chongqing 400716, China
下载:  HTML   PDF (7195KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高兔肉的嫩度和保水性,试验以伊拉兔后腿肉为研究对象,以剪切力和蒸煮损失为因变量,首先研究CaCl2、无花果蛋白酶和猕猴桃蛋白酶以单一和复合的形式对兔后腿肉的嫩化效果,研究表明三者复合的效果更显著;再以响应面法优化三者复配比例;以正交试验优化嫩化条件;最后以剪切力,蒸煮损失,肌纤维小片化指数,质构分析作为验证试验的指标。结果显示,当CaCl2、无花果蛋白酶、猕猴桃蛋白酶以质量浓度18、11、6 mg/L复配;在pH=8,温度30 ℃,时间90 min条件下有最显著嫩化效果。处理组剪切力值为15.49 N,蒸煮损失为25.73%,与对照组相比,剪切力、蒸煮损失、硬度分别降低了50%、17%、65%,肌纤维小片化指数及弹性分别增加54%和40%。结果表明,该复合嫩化剂可以显著改善兔肉嫩度及保水性,对兔肉加工具有一定参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李明奇
贺稚非
李少博
李冉冉
李洪军
关键词:  兔肉  氯化钙  无花果蛋白酶  猕猴桃蛋白酶  嫩化    
Abstract: In order to improve the tenderness and water holding capability of rabbit meat, the hind leg meat from Yila rabbit was treated with a combination of CaCl2, ficin and kiwifruit protease as tenderizers. The optimal ratio of tenderizers and the optimal tenderizing condition of compound tenderizer were determined according to the analysis of the shear force, cooking loss, myofibrillar fragmentation index and texture profile of the meat. The results showed that the compound tenderizer had the best tenderizing effect with the optimal proportion (18 mg/L CaCl2, 11 mg/L ficin and 6 mg/L kiwifruit protease) under the optimized condition (tenderized at pH=8 and 30 ℃ for 90 min). Under this condition, the shear force and the cooking loss of the rabbit hind leg meat were 15.49 N and 25.73%, respectively, which reduced by 50% and 17%, respectively, compared to the control. In addition, the hardness of tenderized meat decreased by 65%, the myofibrillar fragmentation index and the elasticity increased by 54% and 40%, respectively. The results showed that the compound tenderizer can significantly improve the tenderness and water holding capability of rabbit meat, which has certain reference value for rabbit meat processing.
Key words:  rabbit meat;calcium chloride;ficin;kiwifruit protease;tenderization
               出版日期:  2019-09-25      发布日期:  2019-11-06      期的出版日期:  2019-09-25
基金资助: 国家自然科学基金项目(31671787);国家兔产业技术体系肉加工与综合利用(CARS-43-E-1);重庆市草食牲畜产业技术体系(Y201706);重庆市研究生科研创新项目(CYB18099)
作者简介:  硕士研究生(李洪军教授为通讯作者)。
引用本文:    
李明奇,贺稚非,李少博,等. 氯化钙-无花果蛋白酶-猕猴桃蛋白酶复合嫩化剂体系改善兔肉嫩度和保水性的工艺优化[J]. 食品与发酵工业, 2019, 45(18): 120-129.
LI Mingqi,HE Zhifei,LI Shaobo,et al. Optimization of calcium chloride, ficin and kiwifruit protease tenderization system to improve the tenderness and water holding capability of rabbit meat[J]. Food and Fermentation Industries, 2019, 45(18): 120-129.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021040  或          http://sf1970.cnif.cn/CN/Y2019/V45/I18/120
[1] 薛山. 我国兔产业发展现状及趋势展望[J]. 肉类研究, 2016, 30(8): 44-48.
[2] 王兆明,贺稚非,余力,等. 加热后兔肉中心温度的变化对其品质特性的影响[J]. 食品科学, 2015, 36(19): 67-71.
[3] 宋萃. 四川白兔肉及其肌原纤维蛋白热加工特性研究[D]. 重庆:西南大学, 2017.
[4] 宋丽坤,李诚,杨勇,等. 油炸兔肉酶法预处理及改良剂配方优化[J]. 食品与生物技术学报, 2017, 36(9):76-84.
[5] 杨鸿基,韩玲,孔祥颖,等. 氯化钙-木瓜蛋白酶-碳酸氢钠嫩化体系改善原切牦牛排嫩度[J].食品科学,http://kns.cnki.net/kcms/detail/11.2206.TS.20181218.1349.082.html.
[6] 丛玉艳,张建勋. 氯化钙处理对肉类嫩化的研究进展[J]. 食品研究与开发, 2005,26(5): 184-186.
[7] 诸永志,王道营,徐为民,等. 几种兔肉嫩化方法的研究[J]. 江苏农业科学, 2007(3): 204-206.
[8] BHAT Z F, MORTON J D, MASON S L, et al. Role of calpain system in meat tenderness: A review[J]. Food Science and Human Wellness, 2018, 7(3): 196-204.
[9] LAWRENCE T E, DIKEMAN M E, STEPHENS J W, et al. In situ investigation of the calcium-induced proteolytic and salting-in mechanisms causing tenderization in calcium-enhanced muscle[J]. Meat Science,2004, 66(1): 69-75.
[10] BUNMEE T, JATURASITHA S, KREUZER M, et al. Can calcium chloride injection facilitate the ageing-derived improvement in the quality of meat from culled dairy cows?[J]. Meat Science, 2014, 96(4): 1 440-1 445.
[11] PIGOTT R S, KENNEY P B, SLIDER S, et al. Formulation protocol and dicationic salts affect protein functionality of model system beef batters[J]. Journal of Food Science, 2000, 65(7): 1 151-11 154.
[12] FERNNDEZ-LUCAS J, CASTAEDA D, HORMIGO D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry[J]. Trends in Food Science & Technology, 2017, 68: 91-101.
[13] RAMEZANI R, AMINLARI M, FALLAHI H. Effect of chemically modified soy proteins and ficin-tenderized meat on the quality attributes of sausage[J]. Journal of Food Science, 2003, 68(1): 85-88.
[14] AMINLARI M, SHEKARFOROUSH S S, GHEISARI H R, et al. Effect of actinidin on the protein solubility, water holding capacity, texture, electrophoretic pattern of beef, and on the quality attributes of a sausage product[J]. Journal of Food Science, 2009, 74(3): C221-C226.
[15] ZHU X, KAUR L, STAINCLIFFE M, et al. Actinidin pretreatment and sous vide cooking of beef brisket: Effects on meat microstructure, texture and in vitro protein digestibility[J]. Meat Science, 2018, 145: 256-265.
[16] 孙倩. 三种不同来源(植物、细菌和真菌)蛋白酶的纯化、性质及应用研究[D]. 北京:中国农业大学, 2016.
[17] CHRISTENSEN M, TΦRNGREN M A, GUNVIG A, et al. Injection of marinade with actinidin increases tenderness of porcine M. biceps femoris and affects myofibrils and connective tissue.[J]. Journal of the Science of Food and Agriculture, 2009, 89(9): 1 607-1 614.
[18] TOOHEY E S, KERR M J, VAN DE VEN R, et al. The effect of a kiwi fruit based solution on meat traits in beef m. semimembranosus (topside)[J]. Meat Science, 2011, 88(3): 468-471.
[19] LIU C, XIONG Y L, RENTFROW G K. Kiwifruit protease extract injection reduces toughness of pork loin muscle induced by freeze-thaw abuse[J]. LWT - Food Science and Technology, 2011, 44(10): 2 026-2 031.
[20] MAQSOOD S, MANHEEM K, GANI A, et al. Degradation of myofibrillar, sarcoplasmic and connective tissue proteins by plant proteolytic enzymes and their impact on camel meat tenderness[J]. Journal of Food Science & Technology, 2018, 55(9): 3 427-3 438.
[21] ZHU X, KAUR L, BOLAND M. Thermal inactivation of Actinidin as affected by meat matrix[J]. Meat Science, 2018, 145: 238-244.
[22] BEKHIT A A, HOPKINS D L, GEESINK G, et al. Exogenous proteases for meat tenderization[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(8): 1 012-1 031.
[23] HOMAEI A, STEVANATO R, ETEMADIPOUR R, et al. Purification, catalytic, kinetic and thermodynamic characteristics of a novel ficin from Ficus johannis[J]. Biocatalysis and Agricultural Biotechnology,2017, 10: S1853534904.
[24] ABDEL-NAEEM H H S, MOHAMED H M H. Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain[J]. Meat Science,2016, 118: 52-60.
[25] 李雨林, 周海英,申琳, 等. 无花果蛋白酶与木瓜蛋白酶对牛肉嫩化的研究[J]. 肉类工业, 2006(11): 31-33.
[26] 王兆明.兔肉滚揉腌制工艺及品质特性变化研究[D]. 重庆:西南大学, 2016.
[27] 唐福元,刘晓庚,毛匡奇,等. 超声辅助无花果叶蛋白酶复合嫩化剂对猪脯肉嫩度的影响[J]. 食品科学, 2017, 38(12): 211-217.
[28] LI X, SUN Y, PAN D, et al. The effect of CaCl2 marination on the tenderizing pathway of goose meat during conditioning[J]. Food Research International, 2017, 102: 487-492.
[29] SULLIVAN G A, CALKINS C R. Application of exogenous enzymes to beef muscle of high and low-connective tissue[J]. Meat Science, 2010, 85(4): 730-734.
[30] PAULIN D, LI Z. Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle[J]. Experimental Cell Research, 2004, 301(1): 1-7.
[31] 周心雅,贺稚非,李洪军,等. 酸碱度对兔肉肌原纤维蛋白功能性质的影响[J]. 食品与发酵工业,2017,43(11): 176-183.
[32] SHIN H G, CHOI Y M, KIM H K, et al. Tenderization and fragmentation of myofibrillar proteins in bovine longissimus dorsi muscle using proteolytic extract from Sarcodon aspratus[J]. LWT - Food Science and Technology,2008, 41(8): 1 389-1 395.
[33] RAWDKUEN S, JAIMAKREU M, BENJAKUL S. Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex[J]. Food Chemistry,2013,136(2):909-916.
[1] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[2] 陈茹, 曾令英, 李洪军, 王春幸, 贺稚非. 复合黏合剂对兔肉排重组过程中理化特性的影响[J]. 食品与发酵工业, 2021, 47(2): 130-136.
[3] 黄卉, 魏涯, 杨贤庆, 岑剑伟, 赵永强, 陈胜军, 胡晓, 王悦齐, 郝淑贤. 肌肉改性处理对鸢乌贼品质的影响[J]. 食品与发酵工业, 2020, 46(22): 42-47.
[4] 孙海磊, 罗欣, 朱立贤, 毛衍伟, 张文华, 张一敏. 超声波技术在牛肉嫩化中的应用研究进展[J]. 食品与发酵工业, 2020, 46(20): 282-286.
[5] 彭荣, 蔡琼, 贺稚非, 李洪军. 红曲霉对发酵兔肉香肠抗氧化活性及生物胺含量的影响[J]. 食品与发酵工业, 2020, 46(19): 48-56.
[6] 薛思雯, 衣晓坤, 于小波, 徐幸莲. 超高压处理僵直前兔肉对其斩拌肉糜流变特性及蛋白二级结构的影响[J]. 食品与发酵工业, 2019, 45(6): 77-82.
[7] 周心雅, 贺稚非, 王兆明, 甘潇, 李洪军. 冷藏对兔肉不同部位新鲜度及腥味物质己醛和己酸变化的影响[J]. 食品与发酵工业, 2019, 45(6): 122-126.
[8] 曾令英,贺稚非,李洪军. 冲击波在肉类嫩化中的应用研究进展[J]. 食品与发酵工业, 2019, 45(5): 259-265.
[9] 陈一萌, 唐善虎, 李思宁, 贡佳欣, 李琦. 超声波辅助木瓜蛋白酶及发酵处理对牦牛肉的理化和质构特性[J]. 食品与发酵工业, 2019, 45(23): 183-188.
[10] 时海波, 诸永志, 陈晓, 张新笑, 姜迪, 徐平平, 邹烨, 王道营, 徐为民. 碳酸氢钠联合超声波对羊肉嫩度及其肌动球蛋白含量的影响[J]. 食品与发酵工业, 2019, 45(22): 220-227.
[11] 郝婉名, 祝超智, 赵改名, 韩明山, 孟子晴, 王可, 李苗云. 碳酸钠对牛肉嫩化效果及品质的影响[J]. 食品与发酵工业, 2019, 45(20): 157-163.
[12] 张强, 代文婷, 金新文. 氯化钙与1-甲基环丙烯对伽师瓜果实软化与果胶酶活性及其基因表达影响[J]. 食品与发酵工业, 2019, 45(2): 45-52.
[13] 阎然, 杨晓颖, 傅茂润, 杜雅珉, 孙斐, 刘亚敏, 王金玲, 窦广磊. 外源果胶甲酯酶和氯化钙复合处理对树莓采后品质的影响[J]. 食品与发酵工业, 2019, 45(18): 130-136.
[14] 李少博, 贺稚非, 胡颖, 王泽富, 李洪军. 日龄对雄性伊拉兔肌肉蛋白质组成的影响[J]. 食品与发酵工业, 2019, 45(15): 93-99.
[15] 余娱乐, 贺稚非, 李洪军. pH调节法诱导兔肉肌原纤维蛋白性质变化的研究[J]. 食品与发酵工业, 2018, 44(5): 90-95.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn