Please wait a minute...
 
 
食品与发酵工业  2019, Vol. 45 Issue (18): 284-292    DOI: 10.13995/j.cnki.11-1802/ts.021291
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
果实异质性对酿酒葡萄组成及相应葡萄酒质量影响的研究进展
蒋宝*
渭南职业技术学院,陕西 渭南,714026
Effects of berry heterogeneity on grape fruits composition and resulting wine quality: A review
JIANG Bao*
Weinan Vocational & Technical College, Weinan 714026, China
下载:  HTML   PDF (11079KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 果实异质性是影响葡萄组成和相应葡萄酒质量的重要因素。文章在调研了近15年来国内外研究文献的基础上,首先从果实重量、直径、浆果密度及果实采收时可溶性固形物含量等方面分析了果实异质性研究常用分类方法,然后重点综述了果实异质性对酿酒葡萄及相应葡萄酒的理化组成、营养特性和香气物质的影响所取得的最新研究进展,最后分析了过去研究存在的问题以及今后的研究方向等。结果表明,果实异质性对葡萄酒的理化组成具有降低小果粒酒苹果酸含量和pH值,增加小果粒酒颜色,改变小果粒酒可滴定酸含量等影响;对果实营养特性具有增加小粒果实酚类物质含量,改变浆果中部分单体酚物质含量,增加高密度浆果的抗氧化能力等影响;对葡萄酒的香气物质具有改变葡萄酒部分香气物质的含量,甚至整体香气质量等影响。葡萄果实的异质性能显著影响葡萄酒的风格,值得深入研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋宝
关键词:  果实异质性  酿酒葡萄  葡萄酒  组成  品质    
Abstract: Fruit heterogeneity is an important factor that affects grape composition and wine quality. Research methods of fruit heterogeneity as well as its effects on wine grapes and wines were reviewed. Four main classification methods for fruit heterogeneity were summarized from the aspects of fruit weight, diameter, berry density and soluble solids content with harvest time. The latest research regarding the effects of fruit heterogeneity on physicochemical composition, nutritional characteristics and aroma compounds of wine grapes and corresponding wines were illustrated. Besides, the existing problems were analyzed and future research directions were emphasized. It was found that fruit heterogeneity has effects on the physicochemical composition of wines, such as reducing the content of malic acid and pH value, deepening the color of wines and changing the content of titratable acids. It also increases the content of phenolic substances in small fruits, changes some individual phenolics concentration in berries and increases the antioxidant capacity of high-density berries. Additionally, the content of some aroma substances in wines as well as the overall aroma vary with fruit heterogeneity. Therefore, grape fruit heterogeneity can significantly affect wine style, which is worth for further research.
Key words:  heterogeneity;wine grape    wine    composition    quality
               出版日期:  2019-09-25      发布日期:  2019-11-06      期的出版日期:  2019-09-25
基金资助: 渭南市科技计划项目(2015KYJ-4-3);陕西省科技新星项目(2015KJXX-98)
作者简介:  博士,副教授(本文通讯作者)。
引用本文:    
蒋宝. 果实异质性对酿酒葡萄组成及相应葡萄酒质量影响的研究进展[J]. 食品与发酵工业, 2019, 45(18): 284-292.
JIANG Bao. Effects of berry heterogeneity on grape fruits composition and resulting wine quality: A review[J]. Food and Fermentation Industries, 2019, 45(18): 284-292.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021291  或          http://sf1970.cnif.cn/CN/Y2019/V45/I18/284
[1] 邓洁红, 位佳静,刘永红,等. 刺葡萄花色苷自聚合条件及水合动力学特性的研究[J]. 现代食品科技, 2015, 31(3): 144-150;164.
[2] BAIANO A, TERRACONE C. Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 9 815-9 826.
[3] XIE S, HU F, SONG C Z, et al. Aromatic profiles of young wines from berries at different heights on grapevines[J]. Food Science and Technology, 2016, 36(2): 248-258.
[4] XU X Q, LIU B, ZHU B Q, et al. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions[J]. Plant Physiology and Biochemistry, 2015, 89(4): 123-133.
[5] DAI Z W, OLLAT N, GOMZ E, et al. Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review[J]. American Journal of Enology and Viticulture, 2011, 62(4): 413-425.
[6] KELLER M. Managing grapevines to optimize fruit development in a challenging environment: A climate change primer for viticulturists[J].Australian Journal of Grape and Wine Research, 2010, 16(s1): 56-69.
[7] SOFO A, NUZZO V, TATARANNI G, et al. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.)[J]. Journal of Plant Physiology, 2012, 169(11): 1 023-1 031.
[8] 段罗顺, 柴丽娜,蒯传化,等. 葡萄果实大小粒的影响因素调查及防治方法试验[J]. 中外葡萄与葡萄酒, 2014(6): 29-31.
[9] SMART R E, DICK J K, GRAVETT I M, et al. Canopy management to improve grape yield and wine quality-principles and practices[J]. South African Journal of Enology and Viticulture, 1990, 11(1):3-17.
[10] KONTOUDAKIS N, ESTERUELAS M, FORT F, et al. Influence of the heterogeneity of grape phenolic maturity on wine composition and quality[J]. Food Chemistry, 2011, 124(3): 767-774.
[11] SINGLETON V L, OUGH C S, NELSON K E. Density separation of wine grape berries and ripeness distribution[J].American Journal of Enology and Viticulture, 1996, 17(2): 95-105.
[12] ZOUID I, SIRET R, JOURJON F, et al. Impact of grapes heterogeneity according to sugar level on both physical and mechanical berries properties and their anthocyanins extractability at harvest[J]. Journal of Texture Study, 2013, 44(2): 95-103.
[13] HOLT H E, FRANCIS I L, FIELD J, et al. Relationships between berry size, berry phenolic composition and wine quality scores for Cabernet Sauvignon (Vitis vinifera L.) from different pruning treatments and different vintages[J]. Australian Journal of Grape and Wine Research, 2008, 14(3): 191-202.
[14] ROBY G, HARBERTSON J F, ADAMS D A, et al. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins[J]. Australian Journal of Grape and Wine Research, 2004, 10(2): 100-107.
[15] ROBY G, MATTHEWS M A. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit[J]. Australian Journal of Grape and Wine Research, 2004, 10(1): 74-82.
[16] NUZZO V,MATTHEWS M A. Berry size and yield paradigms on grapes and wine quality[J]. Acta Horticulturae, 2007, 754(10): 423-436.
[17] BARBAGALLO M G, GUIDONI S, HUNTER J J. Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah[J]. South African Journal of Enology and Viticulture, 2011, 32(1): 129-136.
[18] ROLLE L, TORCHIO F, GIACOSA S, et al. Berry density and size as factors related to the physico-chemical characteristics of Muscat Hamburg table grapes (Vitis vinifera L.)[J]. Food Chemistry, 2015, 173(4): 105-113.
[19] WONG D C J, GOTIERREZ R L, DIMOPOULOS N, et al. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size[J]. BMC Genomics, 2016, 17(1): 416-437.
[20] MELO M S, SCHULTZ H R, VOLSCHENK C G, et al. Berry size variation of Vitis vinifera L. cv. Syrah: Morphological dimensions, berry composition and wine quality[J]. South African Journal of Enology and Viticulture, 2015, 36(1): 1-10.
[21] GIL M, PASCUAL O, GMEZ-ALONSO S, et al. Influence of berry size on red wine colour and composition[J]. Australian Journal of Grape and Wine Research, 2015, 21(1): 200-212.
[22] XIE S, TANG Y H, WANG P, et al. Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes[J]. Plos One, 2018, 13(9): e0201374.
[23] CHEN W K, HE F, WANG Y X, et al. Influences of berry size on fruit composition and wine quality of vitis vinifera L. cv. ‘Cabernet Sauvignon’ grapes[J]. South African Journal of Enology and Viticulture, 2018, 39(1): 67-76.
[24] FRIEDEL M, SORRENTINO V, BLANK M, et al. Influence of berry diameter and colour on some determinants of wine composition of Vitis vinifera L. cv. Riesling[J]. Australian Journal of Grape and Wine Research, 2016, 22(2): 215-225.
[25] 吴明辉, 陈为凯,何非,等. 赤霞珠葡萄浆果质量对酿酒品质的影响[J]. 中外葡萄与葡萄酒, 2017(1):9-17;22.
[26] FERRER M, ECHEVERRA G, CARBONNEAU A. Effect of berry weight and its components on the contents of sugars and anthocyanins of three varieties of Vitis vinifera L. under different water supply conditions[J]. South African Journal of Enology and Viticulture, 2014, 35(1): 103-113.
[27] HOUEL C, MARTIN-MAGNIETTE M L, NICOLAS S D, et al. Genetic variability of berry size in grapevine (Vitis vinifera L.)[J]. Australian Journal of Grape and Wine Research, 2013, 19(2): 208-220.
[28] 宋志海, 高飞飞,陈大成. 果实大小相关性及影响因素研究进展[J]. 福建果树, 2002, 121(3): 9-12.
[29] 张雪, 何非,王羽西,等. 同一葡萄园不同‘赤霞珠’植株的浆果品质差异[J]. 西北农业学报, 2016,25(4): 568-579.
[30] 唐永红, 刘美迎,王也,等. 不同产区酿酒葡萄赤霞珠果实最佳粒径范围研究[J]. 西北农林科技大学学报(自然科学版), 2017, 45(1): 153-161.
[31] 乐小凤, 唐永红,鞠延仑,等. ‘霞多丽’葡萄果粒大小对果实品质的影响[J]. 食品科学, 2018, 39(21): 38-45.
[32] 刘旭, 李金璐,田裕平,等. 果实异质性对媚丽葡萄酚类物质及抗氧化活性[J]. 现代食品科技, 2015, 31(12): 134-140.
[33] MUOZ-ESPINOZA C, DI GENOVA A, CORREA J, et al. Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight[J]. BMC Plant Biology, 2016, 16(1): 104-121.
[34] WALKER R R, BLACKMORE D H, CLINGELEFFER P R, et al. Shiraz berry size in relation to seed number and implications for juice and wine composition[J]. Australian Journal of Grape and Wine Research, 2005, 11(4): 2-8.
[35] POSSNER D R E, KLIEWER W M. The localisation of acids, sugars potassium and calcium in developing grape berries[J]. Vitis, 1985, 24(1): 229-240.
[36] ZARROUK O, BRUNETTI C, EGIPTO R, et al. Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy[J]. Frontiers in Plant Science, 2016, 7(11): 1 640-1 658.
[37] HANLIN R L, DOWNEY M O. Condensed tannin accumulation and composition in skin of Shiraz and Cabernet Sauvignon grapes during berry development[J]. American Journal of Enology and Viticulture, 2009, 60(1): 13-23.
[38] TARARA J M, LEE J, SPAYD S E, et al. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in merlot grapes[J]. American Journal of Enology and Viticulture, 2008, 59(5): 235-247.
[39] PETRIE P R, CLINGELEFFER P R. Crop thinning (hand versus mechanical), grape maturity and anthocyanin concentration: outcomes from irrigated Cabernet Sauvignon (Vitis vinifera L.) in a warm climate[J]. Australian Journal of Grape and Wine Research, 2006, 12(1): 21-29.
[40] KELLER M, MILLS L J, WAMPLE R L, et al. Cluster thinning effects on three deficit-irrigated Vitis vinifera cultivars[J]. American Journal of Enology and Viticulture, 2005, 56(2): 91-103.
[41] RAJHA H, DARRA N, KANTAR S, et al. A comparative study of the phenolic and technological maturities of red grapes grown in Lebanon[J]. Antioxidants, 2017, 6(1): 8.
[42] TORCHIO F, CAGNASSO E, GERBI V, et al. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas[J]. Analytica Chimica Acta, 2010, 660(1-2): 183-189.
[43] JIANG B, SUN Z Y. Phenolic compounds, total antioxidant capacity and volatile components of Cabernet Sauvignon red wines from five different wine-producing regions in China[J/OL]. Food Science and Technology, 2018, Nov29.
[44] MENG J F, FANG Y L, QIN M Y, et al. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China)[J]. Food Chemistry, 2012, 134(4): 2 049-2 056.
[45] LIANG Z, CHENG L, ZHONG G Y, et al. Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes[J]. Plos One, 2014, 9(8): e 105146.
[46] XU C M, ZHANG Y, CAO L, et al. Phenolic compounds and antioxidant properties of different grape cultivars grown in China[J]. Food Chemistry, 2010, 119(4): 1 557-1 565.
[47] JIANG B, ZHANG Z W.Free radical scavenging activity and anthocyanin profiles of Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China[J]. South African Journal of Enology and Viticulture, 2019, 40(1): 1-10.
[48] SALINAS M R, ZALACAIN A, PARDO F, et al. Stir bar sorptive extraction applied to volatile constituents evolution during Vitis vinifera ripening[J]. Journal of Agricultural and Food Chemistry, 2004, 52(15): 4 821-4 827.
[49] LAN Y B, QIAN X, YANG Z J, et al. Striking changes in volatile profiles at sub zero temperatures during over-ripening of ‘Beibinghong’ grapes in Northeastern China[J]. Food Chemistry, 2016, 212(12): 172-182.
[50] ZHANG H, FAN P, LIU C, et al. Sunlight exclusion from Muscat grape alters volatile profiles during berry development[J]. Food Chemistry, 2014, 164(12): 242-250.
[51] FENG H, SKINKIS P A, QIAN M C. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal[J]. Food Chemistry, 2017, 214(1): 736-744.
[52] BINDON K A, MYBURGH P, OBERHOLSTER A, et al. Response of grape and wine phenolic composition in Vitis vinifera L. cv. Merlot to variation in grapevine water status[J]. South African Journal of Enology and Viticulture, 2011, 32(1): 71-88.
[53] CASASSA L F, LARSEN R C, BEAVER C W, et al. Impact of extended maceration and regulated deficit irrigation (RDI) in Cabernet Sauvignon wines: Characterization of proanthocyanidin distribution, anthocyanin extraction, and chromatic properties[J]. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6 446-6 457.
[54] TORCHIO F, GIACOSA S, VILANOVA M, et al. Use of response surface methodology for the assessment of changes in the volatile composition of Moscato bianco (Vitis vinifera L.) grape berries during ripening[J]. Food Chemistry, 2016, 212(12): 576-584.
[55] GONZLEZ-BARREIRO C, RIAL-OTERO R, CANCHO-GRANDE B, et al. Wine aroma compounds in grapes: A critical review[J]. Critical Reviews Food Science and Nutrition,2015,55(2):202-218.
[56] WANG D, CAI J, ZHU B Q, et al. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS[J]. Food Chemistry, 2015, 177(6): 346-353.
[1] 占敏宣, 魏清江, 林雄, 李宏祥, 陈金印, 马巧利. PCA再分析采收成熟度对桃溪蜜柚贮藏品质变化模式的影响[J]. 食品与发酵工业, 2021, 47(9): 183-190.
[2] 杨玉宁, 陈松树, 高尔刚, 李园园, 潘秀珍, 刘红昌, 辛雪辉. 基于主成分分析的木通属植物果实品质评价[J]. 食品与发酵工业, 2021, 47(9): 191-200.
[3] 郑涛, 苏柯星, 丛桂芝, 陈明杰, 孙丙寅, 刘淑明. 树上干杏和梅杏果实品质分析与综合评价[J]. 食品与发酵工业, 2021, 47(9): 201-207.
[4] 符旭栋, 陈何燊, 周才琼. 不同预处理对蒜泥风味品质的影响[J]. 食品与发酵工业, 2021, 47(9): 231-239.
[5] 王杰, 杨娟, 钟应富, 吴全, 徐泽, 袁林颖. 烘焙对红陈茶感官品质及主要生化成分的影响[J]. 食品与发酵工业, 2021, 47(9): 240-244.
[6] 刘琦, 毛燚杰, 蔡铭. “专业思政”视阈下思政元素的挖掘与融入路径探索——以食品质量与安全专业为例[J]. 食品与发酵工业, 2021, 47(9): 343-348.
[7] 林江涛, 郭晓丹, 苏东民. 小麦粉吸水速率对面团特性及馒头品质的影响[J]. 食品与发酵工业, 2021, 47(8): 40-45.
[8] 郑欧阳, 孙钦秀, 刘书成, 潘燕墨. 香辛料提取物复配对风干肠品质和生物胺的影响[J]. 食品与发酵工业, 2021, 47(8): 90-95.
[9] 许建东, 张淑娟, 郑小南, 薛建新, 孙海霞. 高光谱技术结合变量选择方法的甘薯冻害检测研究[J]. 食品与发酵工业, 2021, 47(8): 197-203.
[10] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
[11] 黄展文, 王颖, 李明娟, 游向荣, 张雅媛, 周葵, 卫萍, 韦林艳. 采收成熟度对龙滩珍珠李果实品质的影响[J]. 食品与发酵工业, 2021, 47(7): 203-210.
[12] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[13] 李江阔, 高静, 张鹏, 霍俊伟. 微环境气调对蓝果忍冬贮藏品质和抗氧化酶的影响[J]. 食品与发酵工业, 2021, 47(6): 152-159.
[14] 郭靖, 陈于陇, 王萍, 王玲, 陈飞平, 罗政, 于新. 不同调湿包装对荔枝贮藏品质的影响[J]. 食品与发酵工业, 2021, 47(6): 169-175.
[15] 闫欣鹏, 张润光, 梁琪琪, 郭晓成, 姚岗, 李玉英, 张有林. 低温结合1-MCP处理对突尼斯软籽石榴采后品质的影响[J]. 食品与发酵工业, 2021, 47(5): 147-155.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn