Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (4): 7-12    DOI: 10.13995/j.cnki.11-1802/ts.021942
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
咖啡因-淀粉微胶囊的制备、结构表征及形成机理
邵苗1,2, 李松南1, 张斌1,2, 黄强1,2*
1(华南理工大学 食品科学与工程学院,广东 广州,510640);
2(中新国际联合研究院,广东 广州,511363)
Preparation, structural characterization and formation mechanism of caffeine-starch microcapsules
SHAO Miao1,2, LI Songnan1, ZHANG Bin1,2, HUANG Qiang1,2*
1(School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China);
2(Sino-Singapore International Joint Research Institute, Guangzhou 511363, China)
下载:  HTML   PDF (2817KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文探究以淀粉为壁材包埋水溶性咖啡因的可行性。以膨胀淀粉、多孔淀粉、颗粒态V型结晶淀粉为包埋壁材,对咖啡因进行吸附和包埋,采用扫描电镜、X-射线衍射、紫外光谱对微胶囊进行结构表征。实验结果表明,颗粒态V型结晶淀粉制备的微胶囊对咖啡因的包埋量和包埋效率最高,分别为45.89 mg/g和65.27%;扫描电镜结果显示,膨胀淀粉和多孔淀粉制备的微胶囊与原淀粉形态相似,而V型结晶淀粉制备的微胶囊呈不规则块状;X-射线衍射结果显示,淀粉和咖啡因之间未形成新的V型峰;紫外光谱结果显示,3种微胶囊均在275.5 nm处有最大吸收峰,表明咖啡因的包埋成功。3种淀粉壁材主要通过淀粉大分子对咖啡因分子进行物理截留,而多孔淀粉的多孔结构对咖啡因分子的吸附和包埋贡献不显著。3种淀粉壁材均可用于包埋水溶性咖啡因,拓展了咖啡因在食品中的应用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵苗
李松南
张斌
黄强
关键词:  淀粉  咖啡因  微胶囊  结构表征  形成机理    
Abstract: The objective of this study was to investigate the possibility of encapsulating water-soluble caffeine using starch as wall materials. Swelled starch, porous starch and granular V-type starch were used as wall materials to encapsulate caffeine, and their microcapsules were characterized by scanning electron microscopy, X-ray diffraction and ultraviolet spectroscopy. The results showed that the microcapsule prepared from granular V-type starch exhibited the highest encapsulating capacity and efficiency of 45.89 mg/g and 65.27%, respectively. Scanning electron microscopy showed that microcapsules prepared from swelled starch and porous starch were similar to native starch in morphological characteristics, while that of V-type starch was of irregular shape. X-ray diffraction showed that there was no new V-type peak appear. UV spectra showed that microcapsules had the maximum absorption peak at 275.5 nm, indicating that caffeine was successfully encapsulated into starch matrix. Caffeine molecule was physically entrapped in three types of starches. Moreover, the porous structure had little effect on caffeine molecule adsorption. In summary, three kinds of starch can be used to encapsulate water-soluble caffeine, which expands the application range of caffeine in food.
Key words:  starch    caffeine    microcapsule    structural characterization    formation mechanism
收稿日期:  2019-08-08                出版日期:  2020-02-25      发布日期:  2020-04-07      期的出版日期:  2020-02-25
基金资助: 国家重点研发计划项目资助(2017YFD0400502)
作者简介:  硕士研究生(黄强教授为通讯作者,E-mail:qiangh@scut.edu.cn)
引用本文:    
邵苗,李松南,张斌,等. 咖啡因-淀粉微胶囊的制备、结构表征及形成机理[J]. 食品与发酵工业, 2020, 46(4): 7-12.
SHAO Miao,LI Songnan,ZHANG Bin,et al. Preparation, structural characterization and formation mechanism of caffeine-starch microcapsules[J]. Food and Fermentation Industries, 2020, 46(4): 7-12.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021942  或          http://sf1970.cnif.cn/CN/Y2020/V46/I4/7
[1] GUO Yuchen, PETER H, AMANPREET K, et al. Characterisation of β-lactoglobulin nanoparticles and their binding to caffeine [J]. Food Hydrocolloids, 2017, 71: 85-93.
[2] NAWROT P, JORDAN S, EASTWOOD J, et al. Effects of caffeine on human health [J]. Food Additives and Contaminants, 2003, 20(1): 1-30.
[3] BELŠČAK-CVITANOVIC′ A, KOMES D, KARLOVIC′ S, et al. Improving the controlled delivery formulations of caffeine in alginate hydrogel combined with pectin, carrageenan, chitosan and psyllium [J]. Food Chemistry, 2015, 167: 378-386.
[4] BAGHERI L, MADADLOU A, YARMAND M, et al. Potentially bioactive and caffeine-loaded peptidic sub-micron and nanoscalar particles [J]. Journal of Functional Foods, 2014, 6: 462-469.
[5] LI Songnan, WANG Chan, FU Xiong, et al. Encapsulation of lutein into swelled cornstarch granules: Structure, stability and in vitro digestion [J]. Food Chemistry, 2018, 268: 362-368.
[6] LI Yuanyuan, ZHAO Xiuhua, WANG Lingling, et al. Preparation, characterization and in vitro evaluation of melatonin-loaded porous starch for enhanced bioavailability [J]. Carbohydrate Polymers, 2018, 202: 125-133.
[7] SHI Linfan, FU Xiong, TAN Chinping. Encapsulation of ethylene gas into granular cold-water-soluble Starch: Structure and release kinetics[J]. Journal of Agricultural and Food Chemistry, 2017, 65(10): 2 189-2 197.
[8] CHANG Fengdan, HE Xianowei, HUANG Qiang. The physicochemical properties of swelled maize starch granules complexed with lauric acid [J]. Food Hydrocolloids, 2013, 32 (2): 365-372.
[9] DOBLADO-MALDONADO A F, GOMAND, S V, GODERIS B, et al. The extent of maize starch crystal melting as a critical factor in the isolation of amylose via aqueous leaching [J]. Food Hydrocolloids, 2016, 61: 36-47.
[10] HUBER K C, BEMILLER J N. Channels of maize and sorghum starch granules [J]. Carbohydrate Polymers, 2000, 41(3): 269-276.
[11] ZHANG BING, CUI DAPENG, LIU MINGZHU, et al. Corn porous starch: Preparation, characterization and adsorption property [J]. International Journal of Biological Macromolecules, 2012, 50(1): 250-256.
[12] LEI MIAO, JIANG FANGCHENG, CAI JIE, et al. Facile microencapsulation of olive oil in porous starch granules: Fabrication, characterization, and oxidative stability [J]. International Journal of Biological Macromolecules, 2018, 111: 755-761.
[13] GUO Lei, LI Guiying, LIU Junshen, et al. Adsorptive decolorization of methylene blue by crosslinked porous starch [J]. Carbohydrate Polymers, 2013, 93(2): 374-379.
[14] CHANG Fengdan, HE Xiaowei, HUANG Qiang. Effect of lauric acid on the V-amylose complex distribution and properties of swelled normal cornstarch granules [J]. Journal of Cereal Science, 2013, 58 (1): 89-95.
[15] CHEN J, JANE J. Properties of granular cold-water-soluble starches prepared by alcoholic-alkaline treatments [J]. Cereal Chemistry, 1994, 71 (6): 623-626.
[16] WANG Shujun, LI Caili, COPELAND L, et al. Starch retrogradation: A comprehensive review [J]. Comprehensive Reviews in Food Science & Food Safety, 2015, 14 (5): 568-585.
[17] LIU HONGSHENG, YU LONG, SIMON G. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios [J]. Carbohydrate Polymers, 2019, 77(3): 662-669.
[18] ADEBOWALE K O, OLU-OWOLABI B I, OLAYINKA O O, et al. Effect of heat moisture treatment and annealing on physicochemical properties of red sorghum starch [J]. African Journal of Biotechnology, 2005, 4 (9):928-933.
[19] PUTSEYS J A, LAMBERTS L, DELCOUR J A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties [J]. Journal of Cereal Science, 2010, 51 (3): 238-247.
[20] DURA A, BLASZCZAK W, ROSELL C M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments [J]. Carbohydrate Polymers, 2014, 101: 837-845.
[21] TESTER R F, DEBON S J J, SOMMERVILLE M D. Annealing of maize starch [J]. Carbohydrate Polymers, 2000, 42(3): 287-299.
[22] SAIDMAN E, CHATTAH A K, ARAGON L, et al. Inclusion complexes of β-cyclodextrin and polymorphs of mebendazole: Physicochemical characterization [J]. European Journal of Pharmaceutical Sciences, 2019, 127: 330-338.
[23] CLARKE R J, COATES J H, LINCOLN S F, Kinetic and equilibrium studies of cyclomalto-octaose (γ-cyclodextrin)-methyl orange inclusion complexes [J]. Carbohydrate Research, 1984, 127 (2): 181-191.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 耿雪营, 郭藏, 米生权, 张艳贞, 郭俊霞, 陈文. 单宁的血糖调节活性功能研究进展[J]. 食品与发酵工业, 2021, 47(7): 301-306.
[3] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[4] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[5] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[6] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
[7] 张兰, 徐永建. 植物精油微胶囊制备及其在果蔬保鲜包装中的应用[J]. 食品与发酵工业, 2021, 47(3): 274-280.
[8] 惠瑶瑶, 郑斐, 王倩楠, 安贤惠. 一种检测葡萄糖氧化酶活力的新方法[J]. 食品与发酵工业, 2020, 46(9): 255-259.
[9] 邓维琴, 肖晴芹, 李雄波, 范智义, 胡廷, 陈功, 张其圣, 李恒. 郫县豆瓣中高产α-淀粉酶米曲霉筛选鉴定及产黄曲霉毒素特性评价[J]. 食品与发酵工业, 2020, 46(9): 50-56.
[10] 常馨月, 罗惟, 陈程莉, 董全. 奇亚籽油微胶囊贮藏稳定性及缓释动力学[J]. 食品与发酵工业, 2020, 46(9): 108-114.
[11] 李超, 李保国, 朱传辉, 孟祥. 茶多酚磁性微胶囊的制备条件优化和性能分析[J]. 食品与发酵工业, 2020, 46(9): 128-134.
[12] 伍燕, 朱家豪, 汪伟, 申利群. 暗褐网柄牛肝菌多糖AHP分离纯化和结构研究[J]. 食品与发酵工业, 2020, 46(8): 92-96.
[13] 刘卫宝, 余讯, 徐静静, 詹晓北, 张洪涛, 朱莉. 黄芪多糖的分离、结构表征及益生活性研究[J]. 食品与发酵工业, 2020, 46(7): 50-56.
[14] 闵钰, 魏雪团. 解淀粉芽胞杆菌中speE基因在亚精胺合成中的功能鉴定[J]. 食品与发酵工业, 2020, 46(7): 69-74.
[15] 周小清, 樊发年, 林静宜, 汪静静. 全自动蒸馏-电位滴定法测定食品中二氧化硫残留量[J]. 食品与发酵工业, 2020, 46(6): 280-284.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn