Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (4): 28-33    DOI: 10.13995/j.cnki.11-1802/ts.021965
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
常压室温等离子体诱变选育高产核黄素枯草芽孢杆菌
郭佳欣1,2,3,4, 张培基1,2,3,4, 刘丁玉1,2,3,4, 洪坤强1,2,3,4, 陈涛1,2,3,4, 王智文1,2,3,4*
1(天津大学 化工学院,天津, 300350);
2(系统生物工程教育部重点实验室,天津, 300350);
3(合成生物学前沿科学中心,天津, 300350);
4(天津化学化工协同创新中心合成生物学平台,天津, 300350)
Screening of high-yield riboflavin Bacillus subtilis strain by atmospheric and room temperature plasma
GUO Jiaxin1,2,3,4, ZHANG Peiji1,2,3,4, LIU Dingyu1,2,3,4, HONG Kunqiang1,2,3,4, CHEN Tao1,2,3,4, WANG Zhiwen1,2,3,4*
1(School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China);
2(Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China);
3(Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China);
4(SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350,China)
下载:  HTML   PDF (847KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究以BS120作为出发菌株,通过常压室温等离子体诱变(atmospheric and room temperature plasma,ARTP)技术进行诱变处理,第一轮以40 mg/L 8-氮鸟嘌呤为筛选拮抗物进行筛选,得到核黄素产量和得率分别提升61.60%和58.12%的菌株BSG1。第二轮诱变以300 mg/L寡霉素为筛选拮抗物进行筛选,筛选获得菌株BSG3,核黄素产量和得率较BS120分别提升83.59%和78.76%。将核黄素操纵子表达质粒pMX45转入BSG3中,得到菌株BSG5,核黄素产量达到(4 467.08±99.47) mg/L,得率为(42.56±1.25) mg/g葡萄糖,较BS120分别提高140.94%和120.52%,展现了良好的核黄素发酵性能和遗传稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭佳欣
张培基
刘丁玉
洪坤强
陈涛
王智文
关键词:  枯草芽孢杆菌  核黄素  常压室温等离子体诱变  诱变选育  8-氮鸟嘌呤  寡霉素    
Abstract: Bacillus subtilis is an important riboflavin producing strain in microbial fermentation. It is significant importance to breed high-yield-riboflavin Bacillus subtilis strains in industrial production. In this work, the parent riboflavin-producing strain BS120 was treated with atmospheric and room temperature plasma (ARTP) for the following screening. In the first round, the production and yield of riboflavin for mutant strain BSG1 screened with 40 mg/L 8-azaguanine increased by 61.60% and 58.12%, respectively. In the second round, the production and yield of riboflavin for mutant strain BSG3 screened with 300 mg/L oligomycin increased by 83.59% and 78.76% compared with BS120, respectively. Riboflavin operon expression plasmid pMX45 was transformed into BSG3 to generate BSG5 in order to further increase the riboflavin production. The results showed that riboflavin production of BSG5 reached (4 467.08±99.47) mg/L, and the yield was (42.56±1.25) mg/g glucose, which was 140.94% and 120.52% higher than that of BS120 respectively. These mutant strains showed excellent riboflavin fermentation performance and genetic stability during the test.
Key words:  Bacillus subtilis    riboflavin    ARTP    mutation breeding    8-azaguanine    oligomycin
收稿日期:  2019-08-12                出版日期:  2020-02-25      发布日期:  2020-04-07      期的出版日期:  2020-02-25
基金资助: 国家自然科学基金(21576200;21776209;21621004)
作者简介:  硕士研究生(王智文副教授为通讯作者,E-mail: zww@tju.edu.cn)
引用本文:    
郭佳欣,张培基,刘丁玉,等. 常压室温等离子体诱变选育高产核黄素枯草芽孢杆菌[J]. 食品与发酵工业, 2020, 46(4): 28-33.
GUO Jiaxin,ZHANG Peiji,LIU Dingyu,et al. Screening of high-yield riboflavin Bacillus subtilis strain by atmospheric and room temperature plasma[J]. Food and Fermentation Industries, 2020, 46(4): 28-33.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.021965  或          http://sf1970.cnif.cn/CN/Y2020/V46/I4/28
[1] BANERJEE R, BATSCHAUER A. Plant blue-light receptors[J]. Planta, 2005, 220(3):498-502.
[2] WHITESELL J K. The Merck Index, 12th edition, CD-ROM(Macintosh): An encyclopedia of chemicals, drugs, and biologicals[J]. Journal of The American Chemical Society, 1998, 120(9):2 209-2 209.
[3] HASSAN I, CHIBBERI S. NASEEM I. Vitamin B2: A promising adjuvant in cisplatin based chemoradiotherapy by cellular redox management[J]. Food and Chemical Toxicology, 2013, 59:715-723.
[4] SCHETZEK S, HEINEN F, KRUSE S, et al. Headache in children: Update on complementary treatments[J]. Neuropediatrics, 2013, 44(1):25-33.
[5] SHERWOOD M, GOLDMAN R D. Effectiveness of riboflavin in pediatric migraine prevention[J]. Canadian Family Physician, 2014, 60(3):244-246;157.
[6] SCHALLMEY M, SINGH A, WARD OP. Developments in the use of Bacillus species for industrial production[J]. Canadian Journal of Microbiology, 2004, 50(1):1-17.
[7] BARBAU-PIEDNOIR E, DE KEERSMAECKER S C J, WUYTS V, et al. Genome sequence of EU-unauthorized genetically modified Bacillus subtilis strain 2014-3557 overproducing riboflavin, isolated from a vitamin B2 80% feed additive [J]. Microbiology Resource Announcements, 2015, 3(2):1-2.
[8] 吴亦楠, 邢新会, 张翀, 等. ARTP生物育种技术与装备研发及其产业化发展[J]. 生物产业技术, 2017(1):37-45.
[9] OTTENHEIM C, NAWRATH M, WU J. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): The latest development[J]. Bioresources and Bioprocessing, 2018, 5(1):12.
[10] REVUELTA J L, LEDESMA-AMARO R, LOZANO-MARTINEZ P, et al. Bioproduction of riboflavin: A bright yellow history[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44 (4-5): 659-665.
[11] SHI T, WANG Y C, WANG Z W, et al. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis[J]. Microbial Cell Factories, 2014, 13(1):1-16.
[12] BUEY RM, LEDESMA-AMARO R, Balsera M, et al. Increased riboflavin production by manipulation of inosine 5'-monophosphate dehydrogenase in Ashbya gossypii[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9 577-9 589.
[13] WANG G,SHI T,CHEN T, et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis[J]. Metabolic Engineering, 2018, 48:138-149.
[14] 张雪, 张晓菲, 王立言, 等. 常压室温等离子体生物诱变育种及其应用研究进展[J]. 化工学报, 2014, 65(7):2 676-2 684.
[15] 薛莹莹,林福兴,别小姝,等. ARTP诱变联合抗生素抗性选育纳豆激酶高产菌株[J]. 食品工业科技, 2019,40(33):93-97.
[16] 王智文. 产核黄素Bacillus subtilis中心代谢途径代谢工程和比较基因组学[D]. 天津: 天津大学, 2011.
[17] 李荣杰. 微生物诱变育种方法研究进展[J]. 河北农业科学, 2009, 13(10):73-76;78.
[18] 高琳, 邢天来, 王非, 等. 抗癌药物8-氮鸟嘌呤与DNA相互作用的电化学研究[J]. 河南大学学报(自然科学版), 2006(3):37-41.
[19] GOGIA S, PURANIK M. Solution structures of purine base analogues 6-chloroguanine, 8-azaguanine and allopurinol[J]. Journal of Biomolecular Structure & Dynamics, 2014, 32(1):27-35.
[20] 李志勇. 富含核黄素营养酵母的研究[D]. 天津: 天津科技大学,2004.
[21] DMYTRUK K V, YATSYSHYN V Y, SYBIRNA N O, et al. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production[J]. Metabolic Engineering, 2010, 13(1):82-88.
[22] 林秀萍, 刘永宏, 李季伦. 寡霉素的研究进展[J]. 中国抗生素杂志, 2012, 37(9):662-665;670.
[23] 范海鸣, 刘艳霞. 线粒体ATP合酶中寡霉素敏感相关蛋白的研究进展[J]. 中国药学杂志, 2008,43(9):641-643.
[24] KOEBMANN B J, WESTERHOFF H V, SNOEP J L, et al. The glycolytic flux in Escherichia coli is controlled by the demand for ATP[J]. Journal of Bacteriology, 2002, 184(14):3 909-3 916.
[25] 陈涛. 基于基因组重排的产核黄素枯草芽孢杆菌的代谢工程[D]. 天津: 天津大学, 2004.
[26] WAGNER J M, LIU L Q, YUAN S F, et al. A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica[J]. Metabolic Engineering, 2018, 47: 346-356.
[1] 唐璎, 邓展瑞, 黄佳, 杨晓楠. 黄曲霉毒素B1降解菌株的鉴定及降解产物研究[J]. 食品与发酵工业, 2021, 47(7): 64-70.
[2] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[3] 杨心萍, 宋词, 张伟豪, 刘艳, 王洲, 薛正莲. 常压室温等离子体与5-溴尿嘧啶复合诱变及快速选育腺苷高产菌株[J]. 食品与发酵工业, 2020, 46(9): 73-77.
[4] 张大伟, 刘德华, 黄钦钦, 田亚平. 食品级高产亮氨酸氨肽酶重组Bacillus subtilis的构建和发酵优化[J]. 食品与发酵工业, 2020, 46(8): 1-6.
[5] 胡凡, 宿玲恰, 吴敬. Thermobifida fusca麦芽三糖淀粉酶的重组表达及其在麦芽三糖制备中的应用[J]. 食品与发酵工业, 2020, 46(5): 23-30.
[6] 付云, 赵谋明, 卢美杉, 余炼, 刘小玲. 枯草芽孢杆菌YA215发酵螺旋藻渣产抑菌活性的工艺[J]. 食品与发酵工业, 2020, 46(4): 146-152.
[7] 张丽杰, 张怀志, 徐岩. 枯草芽孢杆菌Nr.5和底物添加促进酱油中吡嗪类物质合成[J]. 食品与发酵工业, 2020, 46(21): 1-8.
[8] 周秋利, 顾喆, 龙凌凤, 郭书贤, 刘汝宽, 孙海彦, 孙付保. 复合诱变野生酵母ZZ-46选育高产油脂菌株[J]. 食品与发酵工业, 2020, 46(21): 16-22.
[9] 秦海彬, 牛坤, 王远山. S-腺苷蛋氨酸酵母菌的诱变选育[J]. 食品与发酵工业, 2020, 46(21): 23-27.
[10] 陈彬和, 赵炳天, 孙亚娟, 李云兴. 大豆发酵液的抗氧化活性[J]. 食品与发酵工业, 2020, 46(17): 119-124.
[11] 冒鑫哲, 彭政, 周冠宇, 堵国成, 张娟. 枯草芽孢杆菌高产角蛋白酶发酵条件优化[J]. 食品与发酵工业, 2020, 46(17): 138-144.
[12] ITUZE KUBANA Marie Claudine, 乔郅钠, 徐美娟, 陈旭升, 杨套伟, 张显, 邵明龙, 饶志明. 白色链霉菌ε-聚赖氨酸合酶的异源表达及重组菌全细胞合成ε-聚赖氨酸的条件优化[J]. 食品与发酵工业, 2020, 46(16): 1-6.
[13] 卢超, 陈景鲜, 王国霞, 陈刚, 李春阁, 王会鱼. 枯草芽孢杆菌L07产中性蛋白酶发酵条件优化[J]. 食品与发酵工业, 2020, 46(16): 148-153.
[14] 管媛媛, 杨婷, 葛雨嘉, 黄静. 微生物来源淀粉分支酶异源高效表达策略的研究进展[J]. 食品与发酵工业, 2020, 46(16): 276-282.
[15] 陈志娜, 薛咏振, 叶韬, 刘天, 沈业桥. 神仙豆中脂肽产生菌的筛选及脂肽特性分析[J]. 食品与发酵工业, 2020, 46(14): 48-53.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn