Antioxidant activity of different sized particles in Aristichthys nobilis and Salmon Salar head soups
LE Caihong1, SU Hong1, TAO Ningping1,2*
1(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China); 2(Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China)
Abstract: Colloidal particles with different sizes can be formed through self-assembly formation of ingredients migration in fish head soup. The A. nobilis and Salmon Salar head soups with a boiling time of 150 min were selected as the objects in this study. The particle size distribution of the colloidal droplets after coarse filtration, centrifugation, microfiltration and ultrafiltration were measured by Malvern laser particle size analyzer. Six chemical methods were used to study the in vitro antioxidant activities of the four kinds of colloidal particles in A. nobilis and Salmon Salar head soups. The results showed that the average particle size of the colloidal droplets in the soup was significantly reduced after a series of different treatments (P<0.05). The DPPH· and O-2· scavenging ability of A. nobilis was close to Salmon Salar head soup (P>0.05). The Fe2+ chelation ability and ABTS+· scavenging ability of A. nobilis head soup were higher than that of Salmon Salar head soup (P<0.05), but all of them showed as coarse filtration>centrifugation>microfiltration>ultrafiltration. The ·OH scavenging ability and total reducing ability of the Salmon Salar head soup were higher than that of the A. nobilis head soup (P<0.05). Such results showed that the A. nobilis and Salmon Salar head soup colloidal droplets with different particle sizes have antioxidant activity, and the antioxidant activity is better when the particle size is larger. It can provide a theoretical basis for the deep processing and application of fish head soup.
乐彩虹,苏红,陶宁萍. 鳙鱼和三文鱼头汤中不同粒径胶粒的抗氧化活性[J]. 食品与发酵工业, 2020, 46(4): 78-84.
LE Caihong,SU Hong,TAO Ningping. Antioxidant activity of different sized particles in Aristichthys nobilis and Salmon Salar head soups[J]. Food and Fermentation Industries, 2020, 46(4): 78-84.
[1] 施海涛. 最爱还是鳙鱼头[J]. 中国水产, 2012(4): 80. [2] 林伟. 中药复方对鲢鳙鱼出血病的防治研究[J]. 当代水产, 2016(9): 90-91. [3] 谈正衡. 鳙鱼头青鱼尾[J]. 特别健康, 2015(4): 64. [4] 薛山, 陈慧芳, 黄艺婷, 等. 三文鱼鱼骨油粗提工艺优化及脂肪酸组成分析[J]. 中国食品添加剂, 2019,30(1): 77-85. [5] HAQ M, CHUN B S. Microencapsulation of omega-3 polyunsaturated fatty acids and astaxanthin-rich salmon oil using particles from gas saturated solutions (PGSS) process[J]. LWT, 2018, 92: 523-530. [6] 田婷婷. 三文鱼鱼骨和梭子蟹休闲食品的研制[D]. 厦门:集美大学, 2016. [7] CAI Y Y, YAN H W, HAO H J, et al. Flavor research on traditional boiled pork soup and investigation of its industrialization[J]. China Condiment, 2013, 38(12): 99-101. [8] 禄彦科. 猪骨汤微纳米胶粒的形成、化学性质及其初步分离[D]. 杭州:浙江工商大学, 2016. [9] 王莉嫦. 鲮鱼下脚料生产方便鱼汤的关键技术研究[D]. 广州:仲恺农业工程学院, 2015. [10] 徐红梅. 热加工对鳙鱼汤品质影响的研究[D]. 无锡:江南大学, 2008. [11] 蒋静. 电磁加热模式对鲫鱼汤营养素释放的影响[D]. 武汉:华中农业大学, 2016. [12] 田沁, 吴珂剑, 谢雯雯, 等. 鲢鱼头汤烹制工艺优化及烹饪模式对汤品质的影响[J]. 华中农业大学学报, 2014, 33(1): 103-111. [13] HONDA M, ISHIZAKI T, KURODA M. The effect of dried skipjack soup stock on visual fatigue[J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 2006, 53(8): 443-446. [14] ISHIZAKI T, KURODA M, SUGITA M. The effect of dried skipjack soup stock on mood and emotional states, especially the fatigue state[J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 2006, 53(4): 225-228. [15] 黄国榕. 黑鲫鱼汤治疗肝硬化腹水30例临床研究[J]. 国医论坛, 2018,33(1):37-39. [16] 张勇. 鲫鱼汤对阿霉素肾病大鼠治疗作用及机制的研究[D]. 青岛:青岛大学, 2013. [17] ZHANG G, ZHENG S, FENG Y, et al. Changes in nutrient profile and antioxidant activities of different fish soups, before and after simulated gastrointestinal digestion[J]. Molecules 2018, 23(8):1 965. [18] 钱雪丽, 苏红, 樊馨怡, 等. 金枪鱼头汤中脂肪酸组成、维生素E含量分析及微观形貌观察[J]. 上海海洋大学学报, 2019, 28(5): 801-810. [19] QIAN X L, FAN X Y, SU H, et al. Migration of lipid and other components and formation of micro/nano-sized colloidal structure in Tuna(Thunnus obesus)head soup[J]. LWT-Food Science and Technology, 2019,111:69-76. [20] BAKAR M F A, MOHAMDE M, RAHMAT A, et al. Phytochemicals and antioxidant activity of different parts of bambangan(Mangifera pajang)and tarap(Artocarpus odoratissimus)[J]. Food Chemistry, 2009,113(2): 479-483. [21] 韩娜, 杨敏, 杨继涛, 等. 酪蛋白酶解物的分离及其抗氧化活性[J]. 食品工业科技, 2019, 40(9): 166-170;229. [22] 白海娜, 王振宇, 刘瑞海, 等. 白藜芦醇与黑木耳多糖协同清除ABTS自由基活性的研究[J]. 现代食品科技, 2014, 30(3): 64-68. [23] 崔红军, 徐宝才, 王莉, 等. 脱脂米糠碱溶醇溶物抗氧化活性研究[J]. 食品与生物技术学报, 2016, 35(1): 35-41. [24] LAI F R, WEN Q B, LI L, et al. Antioxidant activities of watersoluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment[J]. Carbohydrate Polymers, 2010, 81(2): 323-329. [25] 陈静, 陈志宏, 张汆, 等. 青、红花椒提取物体外抗氧化性质分析[J]. 中国调味品, 2018, 43(9): 62-66;72. [26] 戴结玲, 杨琼利, 孙红梅. 化妆品抗氧化功效评价方法研究进展[J]. 化工管理, 2018, 490(19): 63-65. [27] GULCIN I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa[J]. Amino Acids, 2007, 32(3):431-438. [28] 张雪, 苗婷婷, 陆炯, 等. 天然产物抗氧化活性评价方法研究进展[J]. 广州化工, 2017, 45(19): 7-10. [29] 王晓宇, 杜国荣, 李华. 抗氧化能力的体外测定方法研究进展[J]. 食品与生物技术学报, 2012, 31(3): 247-252. [30] FAN W J, QIAO J L, GUAN X H. Multi-wavelength spectrophotometric determination of Cr(VI) in water with ABTS[J]. Chemosphere, 2017, 171: 460-467. [31] 何蕾. 猪骨汤微纳米胶粒构造对胶体特性及其生物活性的影响[D]. 杭州:浙江工商大学, 2018. [32] PAN B, LI H, LANG D, et al. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications[J]. Environmental Pollution, 2019(248): 320-331. [33] ALI B, MOJTABA S, HAMID A. Hemoglobin detection using carbon dots as a fluorescence probe[J]. Biosensors and Bioelectronics, 2015(71): 470-475. [34] 谈利红, 杨宗发, 张丹, 等. 中药抗氧化活性成分及评价方法研究进展[J]. 亚太传统医药, 2017, 13(10): 35-37.