Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (4): 72-77    DOI: 10.13995/j.cnki.11-1802/ts.022365
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
超高压对乳清分离蛋白结构和抗氧化活性的影响
庞佳坤1,2, 郑远荣1, 刘振民1*, 包怡1,3, 陈森怡1,2, 党慧杰1,2
1(乳业生物技术国家重点实验室,上海乳业生物工程技术研究中心,光明乳业股份有限公司乳业研究院,上海,200436);
2(上海海洋大学 食品学院,上海,201306);
3(上海大学 生命科学学院,上海,200444)
Effects of ultra-high pressure on structure and antioxidant activity of whey protein isolates
PANG Jiakun1,2, ZHENG Yuanrong1, LIU Zhenmin1*, BAO Yi1,3, CHEN Senyi1,2, DANG Huijie1,2
1(State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China);
2(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China);
3(College of Life Science, Shanghai University, Shanghai 200444, China)
下载:  HTML   PDF (1154KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究超高压处理对乳清分离蛋白结构的影响,该研究对乳清分离蛋白进行了不同条件的超高压处理,之后测定表面疏水性、傅里叶变换红外光谱、自由巯基含量和内源荧光光谱分析乳清分离蛋白的结构变化。与未经处理的乳清分离蛋白相比,200 MPa及以上压力显著提高了乳清分离蛋白的表面疏水性,在400 MPa-30 min时达到最大值。超高压处理使乳清分离蛋白的α-螺旋、β-折叠含量发生明显变化,证明了其对乳清分离蛋白二级结构的影响。超高压处理增加了蛋白自由巯基含量,在400 MPa-30 min时增加49%,并且超高压处理也引起了乳清分离蛋白内源荧光强度的显著变化。在所有的超高压处理条件中,400 MPa-30 min对乳清分离蛋白结构的影响最为显著,并显示出了最高的抗氧化活性。研究表明,超高压处理能显著改变乳清分离蛋白的二、三级结构,暴露出疏水基团等活性基团,从而对抗氧化活性产生影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞佳坤
郑远荣
刘振民
包怡
陈森怡
党慧杰
关键词:  超高压  乳清分离蛋白  结构  抗氧化活性    
Abstract: The study aimed to investigate the effects of ultra-high pressure (UHP) on the structure of whey protein isolates. To this end, whey protein isolates were treated with ultra-high pressure under different conditions, and any structural changes were analyzed by surface hydrophobicity, Fourier transform infrared spectrum, free sulfhydryl group content, and endogenous fluorescence spectra. Compared to the control group, the surface hydrophobicity of whey protein isolates significantly improved at 200 MPa and above, reaching a maximum value of 400 MPa-30 min. The content of the α-helix and β-sheet was found to change significantly, which proved its influence on the secondary structure of the whey protein isolates. UHP treatment increased the content of the protein-free sulfhydryl group by 49% at 400 MPa-30min, and UHP treatment also caused significant changes in the endogenous fluorescence intensity of the whey protein isolates. Among all the UHP treatment conditions, the 400 MPa-30 min value had the most significant effect on structure and showed the highest antioxidant activity. The results confirm that UHP treatment can significantly change the secondary and tertiary structures of whey protein isolates, exposing active groups like hydrophobic groups, thereby affecting antioxidant activity.
Key words:  ultra-high pressure    whey protein isolates    structure    antioxidant activity
收稿日期:  2019-09-25                出版日期:  2020-02-25      发布日期:  2020-04-07      期的出版日期:  2020-02-25
基金资助: :国家重点研发计划乳蛋白水解特异性研究及特定功能性乳制品开发(2018YFC1604205);上海乳业生物工程技术研究中心(19DZ2281400)
作者简介:  硕士研究生(刘振民教授级高级工程师为通讯作者,E-mail:liuzhenmin@brightdairy.com)
引用本文:    
庞佳坤,郑远荣,刘振民,等. 超高压对乳清分离蛋白结构和抗氧化活性的影响[J]. 食品与发酵工业, 2020, 46(4): 72-77.
PANG Jiakun,ZHENG Yuanrong,LIU Zhenmin,et al. Effects of ultra-high pressure on structure and antioxidant activity of whey protein isolates[J]. Food and Fermentation Industries, 2020, 46(4): 72-77.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022365  或          http://sf1970.cnif.cn/CN/Y2020/V46/I4/72
[1] NORTON T,SUN D W. Recent Advances in the use of high pressure as an effective processing technique in the food industry[J]. Food & Bioprocess Technology, 2008, 1(1): 2-34.
[2] AMBROSI V,POLENTA G,GONZALEZ C, et al. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins[J]. Innovative Food Science and Emerging Technologies, 2016, 38: 294-301.
[3] PAUL M,BREWSTER J D,VAN HEKKEN D L, et al. Measuring the antioxidative activities of queso fresco after post-packaging high-pressure processing[J]. Advances in Bioscience and Biotechnology, 2012, 3(4): 297-303.
[4] CHAWLA R,PATIL G R,SINGH A K. Hydrostatic pressure technology in dairy processing: A Review[J]. Journal of Food Science and Technology-mysore, 2011, 48(3): 260-268.
[5] KLEBER N,MAIER S,HINRICHS J. Antigenic response of bovine β-lactoglobulin influenced by ultra-high pressure treatment and temperature[J]. Innovative Food Science & Emerging Technologies, 2007, 8(1): 39-45.
[6] CONSIDINE T,PATEL H A,ANEMA S G, et al. Interactions of milk proteins during heat and high hydrostatic pressure treatments-a review[J]. Innovative Food Science & Emerging Technologies, 2007, 8(1): 1-23.
[7] KATO A,NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochimica Et Biophysica Acta, 1980, 624(1): 13-20.
[8] GINA C U M, PERREAULT V, HENAUX L, et al. Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes[J]. Separation and Purification Technology, 2019, 211:242-251.
[9] ATHIRA S,MANN B,SAINI P, et al. Production and characterization of whey protein hydrolysate having antioxidant activity from cheese whey[J]. Journal of the Science of Food & Agriculture, 2015, 95(14): 2 908-2 915.
[10] BRAND-WILLIAMS W,CUVELIER M E,BERSET C. Use of a free radical method to evaluate antioxidant activity[J]. Lwt Food Sci Technol, 1995, 28(1): 25-30.
[11] YEN G C,DUH P D. Antioxidative properties of methanolic extracts from peanut hulls[J]. Journal of the American Oil Chemists’ Society, 1993, 70(4): 383-386.
[12] MOHAMED A,PETERSON S C,HOJILLA-EVANGELISTA M P, et al. Effect of heat treatment and ph on the thermal, surface, and rheological properties of lupinus albus protein[J]. Journal of the American Oil Chemists Society, 2005, 82(2): 135-140.
[13] CHEN H, MURAMOTO K, YAMAUCHI F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein[J]. Journal of Agricultural and Food Chemistry, 1998, 46(1): 49-53.
[14] LI H,ZHU K,ZHOUA H. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula[J]. Food Chemistry, 2012, 132(2): 808-814.
[15] HE X H,LIU H Z,LIU L, et al. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates[J]. Food Hydrocolloids, 2014, 36(5): 123-129.
[16] SHRIVER S K,YANG W W. Thermal and nonthermal methods for food allergen control[J]. Food Engineering Reviews, 2011, 3(1): 26-43.
[17] STATHOPULOS P B, SCHOLZ G A, HWANG Y M, et al. Sonication of proteins causes formation of aggregates that resemble amyloid[J]. Protein Science, 2004, 13(11):3 017-3 027.
[18] CHAN K M, DECKER E A. Endogenous skeletal muscle antioxidants[J]. Critical Reviews in Food Science and Nutrition, 1994, 34(4): 403-426.
[19] HINRICHS,J,RADEMACHER B. High pressure thermal denaturation kinetics of whey proteins[J]. Journal of Dairy Research, 2004, 71(4): 480.
[20] JOSEFINA B,ROSA C,ROSINA L F. Unfolding and refolding of beta-lactoglobulin subjected to high hydrostatic pressure at different pH values and temperatures and its influence on proteolysisz[J]. Journal of Agricultural & Food Chemistry, 2007, 55(13): 5 282-5 288.
[21] ZHANG T,LV C,YUN S, et al. Effect of high hydrostatic pressure (HHP) on structure and activity of phytoferritin[J]. Food Chemistry, 2012, 130(2): 273-278.
[22] FLORENCE L, BENOIT F, THOMPSON J W, et al. Thermal denaturation and aggregation properties of atlantic salmon myofibrils and myosin from white and red muscles[J]. Journal of Agricultural & Food Chemistry, 2007, 55(12): 4 761-4 770.
[23] YIN Shouwei,TANG Chuanhe,WEN Qibiao, et al. Functional properties and in vitro trypsin digestibility of red kidney bean (phaseolus vulgaris L.) protein isolate: Effect of High-pressure Treatment[J]. Food Chemistry, 2008, 110(4): 938-945.
[24] CORRÊA A P,DAROIT D J,COELHO J, et al. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease[J]. Journal of the Science of Food & Agriculture, 2011, 91(12): 2 247-2 254.
[25] ANDRÉS V,VILLANUEVA M J,TENORIO M D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage[J]. Food Chemistry, 2016, 192: 328-335.
[1] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[2] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[3] 李晨晨, 李梦丽, 张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292.
[4] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[5] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[6] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[7] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[8] 刘丹丹, 李昕沂, 罗晶晶, 王启会, 罗静, 王海燕. 超高压微射流均质技术对猕猴桃果酒品质的影响[J]. 食品与发酵工业, 2021, 47(8): 165-169.
[9] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[10] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[11] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[12] 党慧杰, 郑远荣, 刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
[13] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[14] 张耀, 张露, 刘俊, 涂宗财. 青鱼肉活性肽的制备及其抗肿瘤活性研究[J]. 食品与发酵工业, 2021, 47(5): 35-42.
[15] 匡文玲, 李佳, 韩林, 蒋永波, 邱玲岚, 汪开拓, 王敏. 柠檬果汁主要水溶性成分分析及对高脂诱导L-02肝细胞氧化损伤影响的研究[J]. 食品与发酵工业, 2021, 47(5): 43-47.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn