Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (4): 247-252    DOI: 10.13995/j.cnki.11-1802/ts.022415
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
近红外光谱技术定量检测果味啤中的果汁含量
盛晓慧1, 李宗朋1, 李子文1, 朱婷婷2, 王健1*, 尹建军1, 宋全厚1
1(中国食品发酵工业研究院有限公司,北京,100015);
2(北京顺鑫农业股份有限公司牛栏山酒厂,北京,103101)
Quantification of fruit juice content in fruity beer by near-infrared spectroscopy
SHENG Xiaohui1, LI Zongpeng 1, LI Ziwen1, ZHU Tingting2, WANG Jian1*, YIN Jianjun1, SONG Quanhou1
1(China National Research Institute of Food & Fermentation Industries CO., Ltd, Beijing 100015, China);
2(Beijing Shunxin Agriculture Co., Ltd. Niulanshan Winery, Beijing 103101, China)
下载:  HTML   PDF (864KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文以近红外光谱分析技术快速测定菠萝啤中果汁含量为目的,采用了后向间隔偏最小二乘(backward interval partial least squares,Bi-PLS)、组合间隔偏最小二乘(synergy interval partial least squares,Si-PLS)以及遗传算法(genetic algorithm,GA)提取特征波长以提高模型性能。研究结果表明,基于Si-PLS提取的特征波长结合偏最小二乘法(partial least squares, PLS)建立的定量分析模型效果最好,从原始光谱范围4 000~10 000 cm-1内筛选出3个特征光谱区间,分别为(4 484~4 960,5 600~6 051,7 844~8 080) cm-1,共94个特征变量,比原始1 501个波长变量减少了93.7%,验证集的均方根误差和决定系数分别为0.18%、0.89,范围误差比为3.17。实验结果表明,近红外光谱分析技术用于测定果味啤中的果汁含量是可行的,这为快速高效测定菠萝啤果汁含量提供了一种方法依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盛晓慧
李宗朋
李子文
朱婷婷
王健
尹建军
宋全厚
关键词:  菠萝啤  果汁含量  近红外光谱  组合间隔偏最小二乘(Si-PLS)  后向间隔偏最小二乘(Bi-PLS)  遗传算法(GA)    
Abstract: Near-infrared spectroscopy technique was applied to quickly determine the juice content in pineapple beer. Backward interval partial least squares (Bi-PLS), synergy interval partial least squares (Si-PLS) and genetic algorithm (GA) were used to extract characteristic wavelengths prior to build PLS regression models. The performance of PLS model was evaluated by the Decision coefficient (Rp2), the root mean square error (RMSEP) and the ratio of performance to standard deviate (RPD) in the prediction set. Among the methods used, the Si-PLS was found to be superior to other methods. The predicted root mean square error (RMSEP), determination coefficients for prediction sets (RP2) and ratio of performance to standard deviate (RPD) was 0.18%, 0.89 and 3.17 respectively. The characteristic spectral intervals are 4 484-4 960, 5 600-6 051 and 7 844-8 080 cm-1. And a total of 94 characteristic variables which decreaded by 93.7% than the previous 1 501 wavelength variable. The experimental results indicated that it is feasible to measure the juice content of pineapple beer by near-infrared spectroscopy. This study provided a method for the rapid and efficient determination of pineapple juice content.
Key words:  pineapple beer    juice content    near-infrared spectroscopy    synergy interval partial least squares (Si-PLS)    backward Interval partial least squares (Bi-PLS)    genetic algorithm (GA)
收稿日期:  2019-09-29                出版日期:  2020-02-25      发布日期:  2020-04-07      期的出版日期:  2020-02-25
基金资助: 国家重点研发计划项目(2018YFD0400905);国家重点研发计划项目(2018YFE0196600)
作者简介:  硕士研究生(王健教授级高级工程师为通讯作者,E-mail:onlykissjohn@hotmail.com)
引用本文:    
盛晓慧,李宗朋,李子文,等. 近红外光谱技术定量检测果味啤中的果汁含量[J]. 食品与发酵工业, 2020, 46(4): 247-252.
SHENG Xiaohui,LI Zongpeng,LI Ziwen,et al. Quantification of fruit juice content in fruity beer by near-infrared spectroscopy[J]. Food and Fermentation Industries, 2020, 46(4): 247-252.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022415  或          http://sf1970.cnif.cn/CN/Y2020/V46/I4/247
[1] 杜冰, 姚汝华. 果汁啤酒的生产与发展趋势[J]. 现代食品科技, 2001, 17(1): 21-22.
[2] 尚静, 张艳. 猕猴桃菠萝啤的研制与品质评价[J]. 农产品加工, 2018, 467(11): 14-16.
[3] 汪中世. 蓝莓菠萝啤研制及其稳定性研究[D]. 合肥:安徽农业大学, 2015.
[4] 宋淑红, 徐慧琴. 6°P菠萝菠萝啤的生产[J]. 农产品加工(学刊), 2014(13): 35-36.
[5] DONG D, LU C, CAO Y, et al. Present situation and development strategy of fruit beer in China[J]. Journal of Food Safety & Quality, 2015,6(7):2 626-2 632.
[6] 董德武, 卢存龙, 曹圆圆, 等. 我国果汁啤酒生产现状及发展战略[J]. 食品安全质量检测学报, 2015(7):2 626-2 632.
[7] 张亮, 赵长新. 菠萝啤与果汁组分差异的比较[J]. 食品与发酵工业, 2006, 32(9): 149-152.
[8] 谷如祥, 赵武奇, 石珂心,等. 近红外光谱测定苹果饮料中原果汁含量[J]. 食品工业科技, 2013, 34(20): 75-77.
[9] 牛灿杰, 张慧, 王爽,等. 浓缩还原橙汁饮料中果汁含量快速检测方法探究[J]. 食品工业科技, 2015, 36(8): 72- 77.
[10] 褚小立. 近红外光谱分析技术实用手册[M]. 机械工业出版社, 2016.
[11] CHU Xiaoli,LU Wanzhen. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Guang Pu Xue Yu Guang Pu Fen XI, 2014, 34(10): 2 595-2 605.
[12] 张世芝, 胡树青, 张明锦. 基于回归系数的变量筛选方法用于近红外光谱分析[J]. 计算机与应用化学, 2012, 29(2): 227-230.
[13] NADLER B, COIFMAN R R. The prediction error in CLS and PLS: The importance of feature selection prior to multivariate calibration [J]. Journal of Chemometrics, 2010, 19(2): 107- 118.
[14] RADY A, GUYER D. Utilization of visible/near-infrared spectroscopic and wavelength selection methods in sugar prediction and potatoes classification[J]. Journal of Food Measurement & Characterization, 2015, 9(1): 20- 34.
[15] MOHAMMADREZA K, MOBEDI H, MOBEDI E, et al. Quantitative determination of naltrexone by attenuated total reflectance – FTIR spectrometry using partial least squares (PLS) wavelength selection [J]. Spectroscopy, 2015, 23(2): 113-121.
[16] SPIEGELMAN C H, MCSHANE M J, GOETZ M J, et al. Theoretical justification of wavelength selection in PLS calibration: Development of a new algorithm [J]. Analytical Chemistry, 1998, 70(1): 35- 44.
[17] CHU Xiaoli, XU Yupeng, LU Wanzhen. Research and application progress of chemometrics methods in near infrared spectroscopic analysis[J]. Chinese Journal of Analytical Chemistry, 2008, 36(5): 702-709.
[18] 张严, 谢岩黎, 孙淑敏. 近红外光谱结合化学计量学方法在油脂检测中的应用[J]. 粮食与油脂, 2015, 225(1): 66-68.
[19] 樊双喜, 钟其顶, 李国辉,等. 近红外光谱法快速检测黄酒的酒精度、总糖和总酸[J]. 中国酿造, 2015, 34(2): 135-138.
[20] 张亮, 赵长新. 果啤与果汁组分差异的比较[J]. 食品与发酵工业, 2006, 32(9): 149-152.
[21] 刘桂松. Vis-NIR光谱判别分析的几类模式识别方法研究[D]. 广州:暨南大学, 2015.
[22] QU FANGFANG, REN DONG, HOU JINJIAN, et al. The characteristic spectral selection method based on forward and backward interval partial least squares[J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 593-598.
[23] SHARIATI-RAD M, MASOUMEH H. Selection of individual variables versus intervals of variables in PLSR [J]. Journal of Chemometrics, 2010, 24(2): 45-56.
[24] DENG BAICHUAN, YUN YONGHUAN, MA PAN, et al. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals [J]. The Analyst, 2015, 140(6): 1 876-1 885.
[25] AHLINDER J, NORDGAARDA. Chemometrics comes to court: Evidence evaluation of chem-bio threat agent attacks[J]. Journal of Chemometrics, 2015, 29(5): 267-276.
[26] 雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 西安:西安电子科技大学出版社, 2014.
[27] MARIANI, NATHLIA C T, et al. Predicting soluble solid content in intact jaboticaba [Myrciaria jaboticaba (Vell.) O. Berg] fruit using near-infrared spectroscopy and chemometrics [J]. Food Chemistry, 2014, 15(9): 458-462.
[28] 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4): 1 201-1 206.
[29] LU I R R, KWAN E, THOMAS D R, et al. Two new methods for estimating structural equation models: An illustration and a comparison with two established methods. [J]. International Journal of Research in Marketing, 2011, 28(3): 258-268.
[30] LEARDIR. Application of genetic algorithm-PLS for feature selection in spectral data sets [J]. Journal of Chemometrics, 2010, 14(5-6): 643-655.
[31] HUANG GUANGZAO, RUAN XIUKAI, CHEN XIAOJING, et al. A segmented PLS method based on genetic algorithm [J]. Analytical Methods, 2014, 6(9): 2 900-2 908.
[1] 杨晨昱, 袁鸿飞, 马惠玲, 任亚梅, 任小林. 基于傅里叶近红外光谱和电子鼻技术的苹果霉心病无损检测[J]. 食品与发酵工业, 2021, 47(7): 211-216.
[2] 张珮, 王银红, 李高阳, 单杨, 朱向荣. 基于近红外光谱的桃果实冷害识别分析[J]. 食品与发酵工业, 2021, 47(2): 254-259.
[3] 蔡德玲, 唐春华, 梁玉英, 曾川, 彭碧宁. 融合近红外光谱和颜色参数的草莓可溶性固形物含量定量分析模型构建[J]. 食品与发酵工业, 2020, 46(7): 218-224.
[4] 谈爱玲, 王晓斯, 楚振原, 赵勇. 基于近红外光谱融合与深度学习的玉米成分定量建模方法[J]. 食品与发酵工业, 2020, 46(23): 213-219.
[5] 郝超, 赵忠盖, 刘飞. 基于近红外光谱的柠檬酸发酵液化清液概率偏最小二乘法监控[J]. 食品与发酵工业, 2020, 46(20): 214-220.
[6] 孟庆龙, 尚静, 黄人帅, 陈露涛, 张艳. 苹果可溶性固形物的可见/近红外无损检测[J]. 食品与发酵工业, 2020, 46(19): 205-209.
[7] 唐保山, 李坤, 张雯雯, 史正军, 关庆芳, 徐涓, 马金菊, 刘兰香, 张弘. 近红外漫反射光谱结合偏最小二乘法对紫胶理化指标的快速测定[J]. 食品与发酵工业, 2020, 46(18): 236-244.
[8] 于怀智, 陈东杰, 姜沛宏, 张玉华, 郭风军, 张长峰. 近红外光谱对蒙阴黄桃硬度和可溶性固形物的在线检测[J]. 食品与发酵工业, 2020, 46(14): 216-221.
[9] 张鹏, 陈帅帅, 李江阔, 李博强, 徐勇. 采用近红外光谱进行采后苹果品种及货架期定性判别[J]. 食品与发酵工业, 2019, 45(19): 200-205.
[10] 张智峰, 韩小平, 秦刚, 宋海燕. 近红外光谱结合主成分分析和灰色关联分析的苦荞产地溯源[J]. 食品与发酵工业, 2019, 45(19): 266-269.
[11] 古丽君, 林振华, 吴世玉, 郑彦婕, 周晓文, 袁福定, 江培淳, 林长虹. 近红外光谱结合线性判别分析方法在食醋品牌鉴别中的应用[J]. 食品与发酵工业, 2019, 45(18): 243-247.
[12] 李路 , 黄汉英 , 赵思明 , 等. 基于近红外漫反射光谱的稻谷谷壳率和整精米率预测[J]. 食品与发酵工业, 2018, 44(6): 257-262.
[13] 李路 , 黄汉英 , 李毅 , 等. 稻谷脂肪近红外光谱特征筛选及检测模型构建[J]. 食品与发酵工业, 2018, 44(2): 87-.
[14] 买书魁, 吴镇君, 陈红光, 张福艳, 李子文, 李宗朋, 王琼雅, 尹建军, 王健. 基于近红外光谱技术的白酒原酒中关键成分的定量分析[J]. 食品与发酵工业, 2018, 44(11): 280-285.
[15] 王世芳,宋海燕,张志勇,韩小平. 基于近红外光谱的常温贮藏期番茄果肉硬度动力学模型[J]. 食品与发酵工业, 2017, 43(9): 83-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn