Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (7): 188-193    DOI: 10.13995/j.cnki.11-1802/ts.022659
  贮运与保鲜 本期目录 | 过刊浏览 | 高级检索 |
采后果蔬热处理条件的传热特性分析
丁玉先1,2, 张娜1,2*, 陈爱强3
1(华东交通大学 土木建筑学院,江西 南昌,330013);
2(华东交通大学 土木工程国家实验教学示范中心,江西 南昌,330013);
3(天津商业大学,天津市制冷技术重点实验室,天津,300134)
Analysis of heat transfer characteristics of postharvest heat treatment conditions of fruits and vegetables
DING Yuxian1,2, ZHANG Na1,2*, CHEN Aiqiang3
1(College of Civil and Architecture, East China of Jiaotong University, Nanchang 330013,China);
2(National Experimental Teaching Demonstration Center of Civil Engineering, East China Jiaotong University, Nanchang 330013, China);
3(Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China)
下载:  HTML   PDF (4197KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究果蔬热水处理条件与传热特性之间的联系,运用计算流体力学对已知热处理条件的果蔬(苹果梨、芒果、脐橙、草莓、葡萄和黄瓜)进行传热模拟,研究果肉中心传热速率及温度分布情况。结果表明,所建传热模型模拟值与实测值间均方根误差为7.8%,精度较高。结合果蔬贮运原理分析可知,热处理保鲜效果与果实种类特征紧密相关,贮藏性较强的果实,热处理条件使其传热速率仅处于上升阶段(如苹果梨0~0.7;脐橙0~0.55),若耐贮性一般或极差,传热速率需处于下降区或趋于水平(如芒果2.7~0.5;黄瓜1.1~0.3;草莓0.3~0;葡萄1~0),此时能量交换充分,传热效果增强。“低温长时”或“高温长时”处理传热效果最佳,但应考虑低温时间和高温温度阈值,防止出现热伤害。该方法对探究其他果蔬品种的热处理条件范围提供了理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁玉先
张娜
陈爱强
关键词:  果蔬热处理  计算流体力学  传热速率  生理特性  温度分布  物理特性  条件阈值    
Abstract: This study is to explore the relationship between hot water treatment conditions and heat transfer characteristics of fruits and vegetables. Using computational fluid dynamics, heat transfer simulation was performed on a variety of fruits and vegetables (apple-pear, mango, navel orange, strawberry, grape and cucumber) with known heat treatment conditions, and the heat transfer rate and temperature distribution of the pulp center were obtained. The results show that the rms error between the simulated value and the experimental value of the heat transfer model is 7.8%, and the accuracy is high. Based on the analysis of the principles of fruit and vegetable storage and transportation, it′s known that the heat preservation effect is closely related to the characteristics of fruit types. For some varieties with strong storability, the heat transfer rate only needs to be in the rising stage under heat treatment conditions, (such as apple pear: 0-0.7; navel orange: 0-0.55), but if the storability is average or poor, the heat transfer rate needs is in a falling zone or tends to level (such as mango 2.7-0.5; cucumber 1.1-0.3 or strawberry 0.3-0; grape 1-0), so that the energy exchange is sufficient and the heat transfer effect is enhanced. "Low temperature and long time" or "High temperature and long time" treatments have the best heat transfer effect, but low temperature time and high temperature thresholds should be considered to prevent thermal damage. This method provides a theoretical reference for exploring the range of heat treatment conditions for other varieties.
Key words:  fruit and vegetable heat treatment    computational fluid dynamics    heat transfer rate    physiological characteristics    temperature distribution    physical characteristics    condition threshold
收稿日期:  2019-10-29                出版日期:  2020-04-15      发布日期:  2020-05-19      期的出版日期:  2020-04-15
基金资助: 江西省重点研发计划项目(20181BBF68012);天津市教委项目(2017KJ177)
作者简介:  硕士研究生(张娜讲师为通讯作者,E-mail:zhangna881127@163.com)。
引用本文:    
丁玉先,张娜,陈爱强. 采后果蔬热处理条件的传热特性分析[J]. 食品与发酵工业, 2020, 46(7): 188-193.
DING Yuxian,ZHANG Na,CHEN Aiqiang. Analysis of heat transfer characteristics of postharvest heat treatment conditions of fruits and vegetables[J]. Food and Fermentation Industries, 2020, 46(7): 188-193.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.022659  或          http://sf1970.cnif.cn/CN/Y2020/V46/I7/188
[1] MAXIN P, WILLIAMS M, WEBER R W S.Control of fungal storage rots of apples by hot-water treatments: A Northern European perspective[J]. Erwerbs-Obstbau, 2014, 56(1):25-34.
[2] DI FRANCESCO A,MARI M, ROBERTI R.Defense response against postharvest pathogens in hot water treated apples[J]. Scientia Horticulturae, 2018, 227:181-186.
[3] ZHANG Z K,GAO Z Y,LI M,et al.Hot water treatment maintains normal ripening and cell wall metabolism in mango (Mangifera indica L.) fruit[J].Hort Science,2012,47(10):1 466-1 471.
[4] NASEF,IBRAHIM N.Short hot water as safe treatment induces chilling tolerance and antioxidant enzymes, prevents decay and maintains quality of cold-stored cucumbers[J].Postharvest Biology and Technology,2018,138:1-10.
[5] AMER, BAHER M A, AZAM,MOSTAFA M. Using hot water as a pretreatment to extend the shelf life of cucumbers (Cucumis sativus L.) under cold storage conditions.[J].Journal of Food Process Engineering,2019,42(2):1-11.
[6] WU Z M, YUAN X Z,LI H,et al.Heat acclimation reduces postharvest loss of table grapes during cold storage-Analysis of possible mechanisms involved through a proteomic approach[J]. Postharvest Biology & Technology, 2015,105:26-33.
[7] 陈瑶.热处理对柑橘果实采后保鲜效果的研究[D].南昌:江西农业大学, 2014.
[8] CHEN A Q,YANG Z,YIN H J,et al.Preservation quality of cold shock treated cucumber and heat transfer characteristic during treatment[J].Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(11):349-353.
[9] 黄智,严荣军,李瑞,等.采后热风与热水处理杀虫的水果温度场有限元模拟[J].农业工程学报, 2014, 30(2):252-259.
[10] 李红霞,毕阳,伍利芬,等.采后热水处理对苹果梨青霉病的抗性诱导[J].食品工业科技, 2010, 31(11):329-331.
[11] 李生娥,李红霞,毕阳,等.采前赤霉素结合采后热水处理对‘苹果梨’冷藏期间黑皮的控制及其部分机制[J].果树学报, 2017(7):106-116.
[12] ANWAR R,MALIK A U.Hot water treatment affects ripening quality and storage life of mango (Mangifera indica L.)[J]. Pakistan Journal of Agricultural Sciences, 2007, 44:304-311.
[13] BOTANY C.Control of post-harvest fungal diseases of tropical fruits by heat treatment: A review[J]. Current Botany, 2012.
[14] KANESIRO M A B,DURIGAN J F, Faleiros R R D S,et al. Postharvest treatments on quality of mango fruits (Mangifera indica L var. Zill) stored at low temperature[M]. Developments in Food Engineering. Springer US, 1994.
[15] 马雪梅,吴朝峰,路志芳.热水处理对草莓贮藏品质与抗氧化能力的影响[J].江苏农业科学, 2018,46(2):136-140.
[16] 杜正顺,巩惠芳,汪良驹,等.热水预处理延长冷藏草莓果实保鲜效应的研究[J].江苏农业学报, 2008(6):196-202.
[17] 黄锐,安力,王强,等.热处理对葡萄品质及保护性酶的影响[J].食品工业科技, 2009(8):295-297.
[18] SABIR F K,SABIR A.Quality response of table grapes (Vitis vinifera, L.) during cold storage to postharvest cap stem excision and hot water treatments[J]. International Journal of Food Science & Technology, 2013, 48(5):999-1 006.
[19] 王国泽,莎娜,云月英,等.热处理对黄瓜LOX和PLD活性的影响[J].华北农学报, 2009, 24(6):100-102.
[20] 侯建设,席玙芳,李中华,等.贮前热处理对2 ℃贮藏黄瓜抗冷性和自由基生物学的影响[J].食品与发酵工业.2004,30(5):138-142.
[21] 牛露.果蔬在冷藏库贮藏环境中的热质传递机理研究[D].西安:西安建筑科技大学,2017.
[22] 尹海蛟,杨昭,陈爱强,等.冷热激黄瓜的保鲜效果对比及生物传热分析[J].天津大学学报(自然科学与工程技术版),2011, 44(6):516-521.
[23] FENG X,HANSEN J D,BIASI B,et al. Use of hot water treatment to control codling moths in harvested California ‘Bing’ sweet cherries[J]. Postharvest Biology and Technology, 2004, 31(1):41-49.
[24] 程玉娇, 秦文霞, 赵霞,等.间歇热处理对血橙变温物流保鲜品质的影响[J]. 食品与发酵工业, 2016, 42(10):196-203.
[1] 郭靖, 陈于陇, 王萍, 王玲, 陈飞平, 罗政, 于新. 百香果采后特性与保鲜技术研究综述[J]. 食品与发酵工业, 2021, 47(1): 334-340.
[2] 刘晓柱, 赵湖冰, 李银凤, 于志海, 刘晓辉, 黄名正. 一株刺梨葡萄汁有孢汉逊酵母的鉴定及酿酒特性分析[J]. 食品与发酵工业, 2020, 46(8): 97-104.
[3] 苏勤, 谌英敏, 柏惠康, 宋海燕. 基于计算流体力学的开孔均匀性对番茄预冷性能的影响[J]. 食品与发酵工业, 2020, 46(21): 167-172.
[4] 韦诚, 常荣, 段珍珍, 周才琼. 发酵时长对酸肉物理特性及食用安全性的影响[J]. 食品与发酵工业, 2019, 45(8): 86-92.
[5] 李娇洋, 朱婧玉, 杨帆, 厉建国, 褚千千, 包斌. 沙葱与韭菜采后生理特性和品质变化的比较[J]. 食品与发酵工业, 2019, 45(4): 135-141.
[6] 武万强, 王琳琳, 赵建新, 张灏, 陈卫. 植物乳杆菌生理特性及益生功能研究进展[J]. 食品与发酵工业, 2019, 45(1): 1-13.
[7] . 微波加工过程中食品温度分布规律及其均匀性研究[J]. 食品与发酵工业, 2018, 44(4): 270-278.
[8] 刘瑞赛,安家彦,董文勇,王越. 利用计算流体力学技术分析啤酒发酵罐构型对温度和流动的影响[J]. 食品与发酵工业, 2016, 42(9): 52-.
[9] 林晓婕,翁伯琦,林晓姿. 干制方法对蛹虫草超微粉营养特征物质及物理特性的影响[J]. 食品与发酵工业, 2015, 41(8): 90-.
[10] 窦晓,杨建刚,马莹莹,林秋,林艳,吴赫川. 华根霉在酿酒中的研究进展[J]. 食品与发酵工业, 2015, 41(4): 246-.
[11] 宋玲霞,陈义伦,马超,朱风涛. 干燥方式对枣粉物理特性的影响[J]. 食品与发酵工业, 2014, 40(12): 89-93.
[12] 葛平珍,刘洋,王丹,丁苗,周才琼. 发酵酸肉中消化乳杆菌SR10的理化特性及其降胆固醇作用[J]. 食品与发酵工业, 2013, 39(10): 52-56.
[13] 陆利霞,李霞,孙芸,罗婷,熊晓辉. 鲫鱼贮藏鲜度评价物理特性指标的研究[J]. 食品与发酵工业, 2007, 33(5): 162-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn