Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 99-106    DOI: 10.13995/j.cnki.11-1802/ts.023044
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
赤霉素缺失型番茄果实抗冷性变化
黄笑非1, 屈彤彤1, 丁洋2, 雷彤彤1, 张洁1, 唐选明1*
1(中国农业科学院 农产品加工研究所,北京,100193)
2(北京物资学院,物流学院/北京市物流系统与技术重点实验室,北京,101149)
Chilling resistance of gibberellin-deficiency tomato fruits
HUANG Xiaofei1, QU Tongtong1, DING Yang2, LEI Tongtong1, ZHANG Jie1, TANG Xuanming1*
1(Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China)
2(Beijing Wuzi University, School of Logistics/Beijing Key Laboratory of Logistics System and Technology, Beijing 101149, China)
下载:  HTML   PDF (2396KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为明确赤霉素在番茄果实抗冷调控中的作用地位,以绿熟期的野生型番茄果实及其赤霉素缺失型突变株(gib-3)为试材,4 ℃下贮藏,统计贮藏期间番茄果实冷害指数,观察细胞超微结构,测定细胞膜损伤强度、细胞膜脂酶、细胞壁降解酶以及抗氧化酶等活性的变化,研究赤霉素缺失型番茄果实抗冷特性。结果表明,与野生型番茄果实相比,赤霉素缺失型番茄果实冷害症状和超微结构破坏程度更为严重,丙二醛含量、离子渗透率升高,磷脂酶D、脂氧合酶、多聚半乳糖醛酸酶、果胶甲酯酶活性增大,细胞膜过氧化反应和细胞壁降解速度加快,果实细胞膜和细胞壁的完整性受到破坏;超氧化物歧化酶、过氧化氢酶、苯丙氨酸解氨酶和谷胱甘肽转移酶活性均降低,果实清除自由基能力降低,表明低温下赤霉素缺失不利于番茄果实抵御冷害。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄笑非
屈彤彤
丁洋
雷彤彤
张洁
唐选明
关键词:  番茄果实  赤霉素缺失  冷害  抗冷能力    
Abstract: In order to identify the role of gibberellins (GAs) in the resistance of tomato fruits, the present study used the wild type (WT) and GA-deficient mutant (gib-3) tomato fruits at the mature green stage as raw materials and stored them at 4 ℃. The chilling injury (CI) index was measured, the ultra-structure of cells was observed, cell membrane damage intensity, as well as the activity changes of cell membrane lipase, cell wall degradation enzymes, and antioxidant enzymes of tomato fruits were determined. Results indicated that gib-3 tomato fruits showed more severe chilling symptoms and ultra-structural damage than WT tomato fruits. The MDA content, ion permeability and the activity of PLD, LOX, PG and PME of gib-3 tomato were increased. Cell membrane peroxidation and cell wall degradation of gib-3 tomato fruits accelerated, and their integrity of fruit cell membrane and cell wall was damaged. In addition, the activity of SOD, CAT, PAL and GST were decreased in gib-3 tomato fruits, and the ability of free radical scavenging reduced. According to the results, gibberellin deficiency at low temperatures was not good for tomato fruits to resist chilling injury. This study will provide a theoretical basis for the research on the chilling resistance mechanism of postharvest tomato fruits.
Key words:  tomato fruit    gibberellin deficiency    chilling injury    cold resistance
收稿日期:  2019-12-10                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
基金资助: 国家重点研发专项(2016YFD0400105)
作者简介:  硕士研究生(唐选明教授为通讯作者,E-mail:tangxuanming@caas.cn)
引用本文:    
黄笑非,屈彤彤,丁洋,等. 赤霉素缺失型番茄果实抗冷性变化[J]. 食品与发酵工业, 2020, 46(13): 99-106.
HUANG Xiaofei,QU Tongtong,DING Yang,et al. Chilling resistance of gibberellin-deficiency tomato fruits[J]. Food and Fermentation Industries, 2020, 46(13): 99-106.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023044  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/99
[1] LIU H, SONG L, YOU Y, et al. Cold storage duration affects litchi fruit quality, membrane permeability, enzyme activities and energy charge during shelf time at ambient temperature[J]. Postharvest Biology & Technology, 2011, 60(1):24-30.
[2] SHARMA S, SHARMA R R. Nitric oxide inhibits activities of PAL and PME enzymes and reduces chilling injury in ‘Santa Rosa’ Japanese plum (Prunus salicinalindell) [J]. Journal of Plant Biochemistry and Biotechnology, 2015, 24(3):292-297.
[3] YUN Z, JIN S, DING Y, et al. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage[J]. Journal of Experimental Botany, 2012, 63(8):2 873-2 893.
[4] STEPONKUS P L. Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle[J]. Cryobiology, 1984, 21(6):690-695.
[5] ZHAO R, SHENG J, LV S, et al. Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit[J]. Postharvest Biology and Technology,2011,62(2):121-126.
[6] BARMAN K, ASREY R, PAL R K, et al. Post-harvest nitric oxide treatment reduces chilling injury and enhances the shelf-life of mango (Mangifera indica L.) fruit during low-temperature storage[J]. Journal of Pomology & Horticultural Science, 2015,89(3):253-260.
[7] DING Y, SHENG J, LI S, et al. The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit[J]. Postharvest Biology and Technology, 2015, 101:88-95.
[8] CRAIN B A, CREGG B M. Gibberellic acid inhibitors control height growth and cone production in Abies fraseri[J]. Scandinavian Journal of Forest Research, 2016,32:1-6.
[9] QIU L H, CHEN R F, LUO H M, et al. Effects of exogenous GA3 and DPC treatments on levels of endogenous hormone and expression of key gibberellin biosynthesis pathway genes during stem elongation in sugarcane[J]. Sugar Tech, 2019,21:936-948.
[10] YANG L, YANG D, YAN X, et al. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation[J]. Scientific Reports, 2016, 6:35 447.
[11] 司敏,伍利芬,薛华丽,等. 采前赤霉素处理对李果实采后冷害的抑制及部分机理研究[J]. 中国果树, 2018, 192(4):10-15.
[12] ZHU Z, DING Y, ZHAO J, et al. Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit[J]. Food and Bioprocess Technology, 2016, 9(7):1 202-1 209.
[13] HAYASHI KI, KAWAIDE H, NOTOMI M, et al. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens[J]. FEBS Letters, 2006, 580: 6 175-6 181
[14] BENSEN RJ, ZEEVAART JAD. Comparison of ent-kaurene synthetase A and B activities in cell-free extracts from young tomato fruits of wild-type and gib-1, gib-2, and gib-3 tomato plants[J]. Journal of Plant Growth Regulation, 1990, 9: 237-242.
[15] ZHAO D Y, SHEN L, FAN B, et al. Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage [J]. Journal of Food Science, 2009, 74(5): 348-352.
[16] ZHANG X, SHEN L, LI F, et al. Arginase induction by heat treatment contributes to amelioration of chilling injury and activation of antioxidant enzymes in tomato fruit[J]. Postharvest Biology and Technology, 2013, 79(Complete):1-8.
[17] AGHDAM M S, ASGHARI M, FARMANI B, et al. Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress[J]. Scientia Horticulturae,2012,144:116-120.
[18] MAO L, PANG H, WANG G, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress [J]. Postharvest Biology and Technology, 2007, 44(1): 42-47.
[19] GAYATHRI T, NAIR A S. Isolation, purification and characterisation of polygalacturonase from ripened banana (Musa acuminata cv. Kadali) [J]. International Journal of Food Science & Technology, 2014, 49(2):429-434.
[20] DING Y, SHENG J, LI S, et al. The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit[J]. Postharvest Biology and Technology, 2015,101: 88-95.
[21] FÁTIMA C, PALMA F, JAMILENA M, et al. Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit[J]. Postharvest Biology and Technology, 2015, 108(September):68-77.
[22] VICENTE A R, MANGANARIS G A, MINAS I S, et al. Cell wall modifications and ethylene-induced tolerance to non-chilling peel pitting in citrus fruit[J]. Plant Science, 2013, 210C(9):46-52.
[23] AGHDAM M S, MOHAMMADKHANI N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment[J]. Food and Bioprocess Technology, 2014, 7(3):909-914.
[24] PINHERO R G, ALMQUIST K C, NOVOTNA Z, et al. Developmental regulation of phospholipase D in tomato fruits[J]. Plant Physiology and Biochemistry,2003, 41(3):223-240.
[25] SEVILLANO L, SANCHEZ-BALLESTA M T, ROMOJARO F, et al. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact[J]. Journal of the Science of Food and Agriculture, 2009, 89(4):555-573.
[26] KHADEMI O, BESADA C, MOSTOFI Y, et al. Changes in pectin methylesterase, polygalacturonase, catalase and peroxidase activities associated with alleviation of chilling injury in persimmon by hot water and 1-MCP treatments[J]. Scientia Horticulturae, 2014, 179:191-197.
[27] 生吉萍,罗云波,申琳. PG和LOX对采后番茄果实软化及细胞超微结构的影响[J]. 园艺学报,2000(4):276-281.
[28] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
[29] EGEA I, FLORES F B, MARTÍNEZ-MADRID M C, et al. 1-Methylcyclopropene affects the antioxidant system of apricots (Prunus armeniaca L. cv. Búlida) during storage at low temperature[J]. J Sci Food Agric, 2010, 90(10):1 764-1 764.
[30] ORTEGA-GARCÍ A, FRANCISCA, PERAGÓN, et al. The response of phenylalanine ammonia‐lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual) [J]. Journal of the Science of Food and Agriculture, 2009, 89(9):1 565-1 573.
[31] OLSEN K M, LEA U S, SLIMESTAD R, et al. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis[J]. Journal of Plant Physiology, 2008, 165(14):1 490-1 499.
[32] HEIM K E, TAGLIAFERRO A R, BOBILYA D J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships[J]. Journal of Nutritional Biochemistry, 2002, 13(10):572-584.
[33] LE MARTRET B, POAGE M, SHIEL K, et al. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance[J]. Plant Biotechnology Journal, 2011, 9(6):661-673.
[34] MD A K, UJJAL N, JONG-IN P, et al. Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance[J]. Genes, 2018, 9(2):84.
[1] 张珮, 王银红, 李高阳, 单杨, 朱向荣. 基于近红外光谱的桃果实冷害识别分析[J]. 食品与发酵工业, 2021, 47(2): 254-259.
[2] 赵昱瑄, 张敏, 姜雪, 胡均如, 李佳乐, 盖晓阳. 短时热处理对低温逆境下黄瓜不同部位的冷害及活性氧代谢影响[J]. 食品与发酵工业, 2020, 46(7): 180-187.
[3] 杨晓月, 郜海燕, 钟迪颖, 张润光, 张有林. 秦薯5号甘薯营养成分测定及贮前低温处理对贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(7): 201-206.
[4] 姜雪, 张敏, 赵昱瑄, 郝爽, 李佳乐, 胡均如, 盖晓阳, 厉建国. 不同初始机体温度对热水处理西葫芦果实低温贮藏品质和活性氧代谢的影响[J]. 食品与发酵工业, 2020, 46(5): 231-239.
[5] 崔文玉, 许新月, 张仁堂, 弓志青, 王文亮, 王延圣. 硫化氢和一氧化氮的交互作用对香蕉采后品质及抗氧化体系的影响[J]. 食品与发酵工业, 2020, 46(13): 166-173.
[6] 曹继璇, 张颖, 娄湘琴, 车炎, 刘畅, 彭勇, 石晶盈. 减压结合1-甲基环丙烯处理通过调控中华寿桃能量代谢控制其采后冷害[J]. 食品与发酵工业, 2020, 46(12): 213-219.
[7] 邵婷婷, 张敏, 刘威, 姜雪, 赵昱瑄, 郝爽, 厉建国, 卢瑛. 采后热水处理对青椒果实低温贮藏期间活性氧代谢及抗氧化物质的影响[J]. 食品与发酵工业, 2019, 45(12): 133-139.
[8] 闫凯亚,张洪翠,蔡佳昂,王静雯,张敏. 间歇热处理对鲜切甘薯贮藏品质的影响[J]. 食品与发酵工业, 2017, 43(9): 226-.
[9] 侯梦阳,胡文忠,修志龙,萨仁高娃,王馨. 水杨酸处理减轻果蔬冷害机制的研究进展[J]. 食品与发酵工业, 2016, 42(10): 257-.
[10] 刘玲,魏亚南,纪淑娟,范兰艳. 间歇升温对低温储藏青椒果实硬度及相关指标的影响[J]. 食品与发酵工业, 2014, 40(04): 195-199.
[11] 高慧,饶景萍,王毕妮,程妮,曹炜. 冷害与油桃果实采后生理及贮藏品质的关系[J]. 食品与发酵工业, 2010, 36(09): 181-185.
[12] 侯建设,席玙芳,李中华,莫文贵. 贮前热处理对2℃贮藏黄瓜抗冷性和自由基生物学的影响[J]. 食品与发酵工业, 2004, 30(5): 138-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn