Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (7): 1-9    DOI: 10.13995/j.cnki.11-1802/ts.023231
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
酿酒酵母异源合成己二酸
张熙1,2, 李国辉1,2, 周胜虎1,2, 毛银1,2, 赵运英1,2*, 邓禹1,2*
1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122);
2(江南大学 生物工程学院,江苏 无锡,214122)
Production of adipic acid in recombinant Saccharomyces cerevisiae
ZHANG Xi1,2, LI Guohui1,2, ZHOU Shenghu1,2, MAO Yin1,2, ZHAO Yunying1,2*, Deng Yu1,2*
1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University,Wuxi 214122, China);
2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (3901KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以酿酒酵母(Saccharomyces cerevisiae)为底盘生物,将来源于嗜热菌Thermobifida fusca B6中的己二酸逆降解途径基因搭配不同的酿酒酵母组成型启动子和终止子,构建在3个穿梭质粒上,并导入宿主细胞,成功实现了己二酸的异源合成。将AA-1菌株在YPD培养基中发酵,得到3.39 mg/L己二酸,是同一宿主中已报道的最高值。同时,敲除了酿酒酵母TCA循环关键基因LSC1,但未能使己二酸产量提高。通过发酵实验,研究了生物量、副产物乙醇与己二酸产量的联系;并通过改变初始碳源浓度对乙醇和己二酸产量进行了研究,为进一步提高己二酸产率、降低酿酒酵母葡萄糖效应提供了参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张熙
李国辉
周胜虎
毛银
赵运英
邓禹
关键词:  己二酸  酿酒酵母  穿梭质粒  生物量  初始碳源浓度    
Abstract: The adipate synthesis pathway from Thermobifida fusca B6 was transformed into Saccharomyces cerevisiae for the first time and succeeded to synthesis adipic acid from glucose. Three shuttle plasmids harboring the pathway genes were combined with suitable constitutive promoters and terminators and introduced into S. cerevisiae. The titer, 3.39 mg/L, was obtained by fermentation of AA-1 strain in YPD medium. To enhance the acceleration of succinyl-CoA from TCA cycle for adipic acid synthesis, the LSC1 gene was deleted. However, it failed to improve adipic acid titer. The relationship between adipic acid titer with the biomass and by-products ethanol was studied. Besides, the yield of ethanol and adipic acid was studied by changing the initial concentration of the carbon source. The results provided a reference for further improving the yield of adipic acid and reducing the Crabtree effect of S. cerevisiae.
Key words:  adipic acid    Saccharomyces cerevisiae    shuttle plasmid    biomass    initial glucose concentration
收稿日期:  2019-12-31                出版日期:  2020-04-15      发布日期:  2020-02-02      期的出版日期:  2020-04-15
基金资助: 国家重点研发计划项目(2019YFA09005502,2018YFA0901401);国家自然科学基金(21877053);江苏省自然科学基金(BK20181345);江南大学自主科研-重点项目(JUSRP51705A)资助
作者简介:  博士研究生(邓禹教授和赵运英副教授为通讯作者,E-mail:dengyu@jiangnan.edu.cn;yunyingzhao@jiangnan.edu.cn)
引用本文:    
张熙,李国辉,周胜虎,等. 酿酒酵母异源合成己二酸[J]. 食品与发酵工业, 2020, 46(7): 1-9.
ZHANG Xi,LI Guohui,ZHOU Shenghu,et al. Production of adipic acid in recombinant Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2020, 46(7): 1-9.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023231  或          http://sf1970.cnif.cn/CN/Y2020/V46/I7/1
[1] JOU W S, CHEN K N, CHAO D Y. Flame retardant and dielectric properties of glass fibre reinforced nylon-66 filled with red phosphorous [J]. Polymer Degradation and Stability, 2001, 74(2): 239-245.
[2] NJH A, MART NEZ V S, NIELSEN L K, et al. Towards synthetic biology strategies for adipic acid production-an in-silico tool for combined thermodynamics and stoichiometric analysis of metabolic networks [J]. ACS Synthetic Biology, 2017, 7(2): 490-509.
[3] BART J C J, CAVALLARO S. Transiting from adipic acid to bio-adipic acid Part II. Biosynthetic pathways [J]. Industrial and Engineering Chemistry Research, 2015, 54(2): 567-576.
[4] GUNUKULA S, ANEX R P. Techno-economic analysis of multiple bio‐based routes to adipic acid [J]. Biofuels Bioproducts and Biorefining-Biofpr, 2017, 11(5): 897-907.
[5] ALINI S, BASILE F, BLASIOLI S, et al. Development of new catalysts for N2O-decomposition from adipic acid plant [J]. Applied Catalysis B-Environmental, 2007, 70(1): 323-329.
[6] KARLSSON E, SHIN J H, SAEZ-JIMENEZ V, et al. Biobased adipic acid - The challenge of developing the production host [J]. Biotechnology Advances, 2018, 36(8): 2 248-2 263.
[7] BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy's "Top 10" revisited [J]. Green Chemistry, 2010, 12(4): 539-554.
[8] YU Jiale, XIA Xiaoxia, ZHONG Jianjiang, et al. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli [J]. Biotechnology and Bioengineering, 2015, 111(12): 2 580-2 586.
[9] CHEONG S, CLOMBURG J M, GONZALEZ R. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions [J]. Nature Biotechnology, 2016, 34(5): 556-561.
[10] CLOMBURG J M, BLANKSCHIEN M D, VICK J E, et al. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids [J]. Metabolic Engineering, 2015, 28(3): 202-212.
[11] BURGARD A P, PHARKYA P, OSTERHOUT R E, et al. Microorganisms for the production of adipic acid and other compounds: United States, WO/2017/0130234[P]. 2017-05-11.
[12] DENG Yu, MAO Yin. Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6 [J]. Journal of Applied Microbiology, 2015, 119(4): 1 057-1 063.
[13] DENG Y, FONG S S. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol [J]. Metabolic Engineering, 2011, 13(5): 570-577.
[14] ZHAO Mei, HUANG Dixuan, ZHANG Xiaojuan, et al. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway [J]. Metabolic Engineering, 2018, 47(5): 254-262.
[15] ZELLE R M, DE H E, VAN WINDEN W A, et al. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export [J]. Applied and Environmental Microbiology, 2008, 74(9): 2 766-2 777.
[16] VERWAAL R, WU L, DAMVELD R A, et al. Succinic acid production in a eukaryotic cell: European Patent, EP/2008/0851178 [P]. 2018-11-14.
[17] CHEN Na, WANG Jingya, ZHAO Yunying, et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer [J]. Microbial Cell Factories, 2018, 17(1): 67-78.
[18] LEAVITT J M, WAGNER J M, TU C C, et al. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae [J]. Biotechnology Journal, 2017, 12(10): 1-9.
[19] RAJ K, PARTOW S, CORREIA K, et al. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae [J]. Metabolic Engineering Communications, 2018, 6(6): 28-32.
[20] PRZYBYLA B, DENNIS R, ZAKHARKIN S, et al. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae [J]. FEBS Journal, 1998, 258(2): 736-743.
[21] STANLEY D, FRASER S, CHAMBERS P J, et al. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae [J]. Journal of Applied Microbiology, 2010, 109(1): 13-24.
[22] DEKEN R. The Crabtree effect: a regulatory system in yeast [J]. Journal of General Microbiology, 1966, 44(2): 149-156.
[23] TOKUHIRO K, ISHIDA N, NAGAMORI E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene [J]. Applied microbiology and biotechnology, 2009, 82(5): 883-890.
[24] POSTMA E, VERDUYN C, SCHEFFERS W A, et al. Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 1989, 55(2): 468-477.
[1] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[2] 杨新, 陈莉, 杨双全, 卢红梅, 章之柱. 不同培养条件下酿酒酵母菌的转录组差异分析[J]. 食品与发酵工业, 2021, 47(4): 102-109.
[3] 张晓晓, 任剑星, 刘凯毅, 李潇, 董健. TOR1基因缺失对酿酒酵母耐受性的影响[J]. 食品与发酵工业, 2021, 47(2): 1-7.
[4] 冉艳朋, 徐沙, 李由然, 蒋玮, 顾正华, 丁重阳, 张梁, 石贵阳. 代谢工程改造酿酒酵母促进L-苯丙氨酸的合成[J]. 食品与发酵工业, 2020, 46(9): 1-9.
[5] 李亿, 秦艳, 申乃坤, 朱婧, 梁戈, 王青艳. 酿酒酵母pdc基因缺陷菌株的构建及其丙酮酸发酵特性[J]. 食品与发酵工业, 2020, 46(8): 7-13.
[6] 赵雪平, 郑海武, 雷蕾, 李婷, 张美枝, 李正英. 本土酿酒酵母发酵梅鹿辄干红动态变化研究[J]. 食品与发酵工业, 2020, 46(8): 105-110.
[7] 叶片, 刘建, 黄均, 严乐晋, 周荣清. 不同种属酵母菌共培发酵桑葚酒的工艺优化[J]. 食品与发酵工业, 2020, 46(8): 173-178.
[8] 郑海武, 雷蕾, 李正英, 赵雪平, 张美枝, 李婷, 黄海英, 李晓娟, 王春燕. 本土优良酿酒酵母的酿造学特性[J]. 食品与发酵工业, 2020, 46(8): 118-122.
[9] 田甜甜, 孙军勇, 蔡国林, 杨华, 吴殿辉, 陆健. 基于转录组学的酿酒酵母耐酸机制解析[J]. 食品与发酵工业, 2020, 46(6): 1-7.
[10] 何曼, 刘畅, 朱凤妹, 葛超, 李军, 阎贺静. 昌黎产区产酶酵母多样性及其应用潜力分析[J]. 食品与发酵工业, 2020, 46(5): 59-67.
[11] 陈胜杰, 高翔, 袁戎宇. 常温常压等离子诱变结合玉米秸秆水解液驯化酿酒酵母生产生物乙醇[J]. 食品与发酵工业, 2020, 46(4): 167-171.
[12] 王轩, 周健, 明红梅, 彭璐, 赵炳鑫, 俞飞. 樱桃果酒酿酒酵母的筛选及香气成分分析[J]. 食品与发酵工业, 2020, 46(3): 124-130.
[13] 吴殿辉, 李晓敏, 蔡国林, 孙军勇, 谢广发, 陆健. 低产尿素黄酒酵母工程菌的酿造特性[J]. 食品与发酵工业, 2020, 46(3): 1-7.
[14] 姚妞妞, 常春晖, 于宏伟, 郭润芳. 适合奶醋发酵的酵母菌发酵动力学[J]. 食品与发酵工业, 2020, 46(22): 106-112.
[15] 谭凤玲, 王宝石, 胡培霞, 刘成功, 张明霞. 非酿酒酵母在葡萄酒混菌发酵中的应用及其挑战[J]. 食品与发酵工业, 2020, 46(22): 282-286.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn