Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 127-132    DOI: 10.13995/j.cnki.11-1802/ts.023436
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
植物乳杆菌CCFM8724对致龋双菌生物膜的抑制作用
秦苏佳, 徐晚晴, 张秋香*, 赵建新, 张灏, 陈卫
(江南大学 食品学院,江苏 无锡,214122)
Inhibitory effect of Lactobacillus plantarum CCFM8724 oncaries-causing dual biofilms
QIN Sujia, XU Wanqing, ZHANG Qiuxiang*, ZHAO Jianxin, ZHANG Hao, CHEN Wei
(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (2910KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 变异链球菌(Streptococcus mutans)生物膜中白色念珠菌(Candida albicans)的存在会增强生物膜的致龋毒力,并导致与幼儿龋病(early childhood caries, ECC)相似的猖獗性龋病的发生。为验证植物乳杆菌(Lactobacillus plantarum)CCFM8724对变异链球菌和白色念珠菌双菌生物膜的体外抑制效果,在双菌生物膜形成的不同时期进行介导,采用结晶紫染色法、蒽酮硫酸法、平板计数法对介导后的生物膜进行评估,并用激光共聚集和扫描电镜对生物膜活死菌菌体和结构进行观察,最后测定CCFM8724对唾液包被羟基磷灰石(saliva-coated hydroxyapatite discs,SHA)的脱钙量和它对溶菌酶的耐受能力。结果表明,植物乳杆菌CCFM8724能显著降低双菌生物膜量、水不溶性胞外多糖的产量以及致病菌活菌数,并破坏生物膜的活性和结构。对SHA的脱钙情况有所缓解,对溶菌酶耐受质量浓度为1.6~2.0 mg/mL,说明CCFM8724具有成为防龋口腔益生菌的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦苏佳
徐晚晴
张秋香
赵建新
张灏
陈卫
关键词:  龋齿  变异链球菌  白色念珠菌  致龋生物膜  牙菌斑  益生菌    
Abstract: The presence of Candida albicans in dental plaque with Streptococcus mutans enhances the virulence leading to the onset of rampant caries which is similar to early childhood caries (ECC). In order to verify the inhibitory effect of Lactobacillus plantarum CCFM8724 on the dual biofilm which infected by S. mutans and C. albicans at different time points in vitro, the treated biofilms were assessed for crystal violet staining, anthrone-sulfuric method and colony forming unit (CFU) counting. The live/dead bacteria and structure of biofilm were observed by laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Finally, the decalcification of saliva-coated hydroxyapatite discs (SHA) after culture with CCFM8724 and the tolerance of lysozyme were determined. The results showed that L. plantarum CCFM8724 could significantly reduce the biomass of dual biofilm, the production of water-insoluble extracellular polysaccharide (EPS) and the CFU of pathogens. It also reduced the viability of biofilm and destroyed the structure of biofilm. Moreover, it alleviated the decalcification of SHA with the tolerance concentration to lysozyme 1.6-2.0 mg/mL. It is suggested that CCFM8724 has the potential to be used as an oral probiotic for caries prevention.
Key words:  caries    Streptococcus mutans    Candida albicans    cariogenic biofilm    dental plaque    probiotics
收稿日期:  2020-01-20                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
基金资助: 国家重点研发计划资助项目( 2017YFD0400600)
作者简介:  硕士研究生(张秋香副教授为通讯作者,E-mail:zhangqx@jiangnan.edu.cn)
引用本文:    
秦苏佳,徐晚晴,张秋香,等. 植物乳杆菌CCFM8724对致龋双菌生物膜的抑制作用[J]. 食品与发酵工业, 2020, 46(13): 127-132.
QIN Sujia,XU Wanqing,ZHANG Qiuxiang,et al. Inhibitory effect of Lactobacillus plantarum CCFM8724 oncaries-causing dual biofilms[J]. Food and Fermentation Industries, 2020, 46(13): 127-132.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023436  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/127
[1] ANIL S, ANAND P S. Early childhood caries: prevalence, risk factors, and prevention [J]. Frontiers in Pediatrics, 2017, 5:157.
[2] CHEN K, GAO S, DUANGTHIP D, et al. Managing early childhood caries for young children in China; proceedings of the Healthcare[C]. Multidisciplinary Digital Publishing Institute, 2018, 6(1):11.
[3] SHEIHAM A, JAMES W P T. A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption [J]. Public Health Nutrition, 2014, 17(10): 2 176-2 184.
[4] RAJA M, HANNAN A, ALI K. Association of oral candidal carriage with dental caries in children [J]. Caries Research, 2010, 44(3): 272-276.
[5] YANG X Q, ZHANG Q, LU L Y, et al. Genotypic distribution of Candida albicans in dental biofilm of Chinese children associated with severe early childhood caries [J]. Archives of Oral Biology, 2012, 57(8): 1 048-1 053.
[6] HWANG G, LIU Y, KIM D, et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo [J]. PLoS Pathogens, 2017, 13(6):e1006407.
[7] ELLEPOLA K, LIU Y, CAO T, et al. Bacterial GtfB augments Candida albicans accumulation in cross-kingdom biofilms [J]. Journal of Dental Research, 2017, 96(10): 1 129-1 135.
[8] FALSETTA M L, KLEIN M I, COLONNE P M, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo [J]. Infection and Immunity, 2014, 82(5): 1 968-1 981.
[9] GUO L, MCLEAN J S, YANG Y, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology [J]. Proceedings of the National Academy of Sciences, 2015, 112(24): 7 569-7 574.
[10] 饶瑞瑛, 任元雪, 李欣瑜, 等. 白及提取物抗变异链球菌致龋效果的研究 [J]. 中国微生态学杂志, 2018, 30(3): 291-295;299.
[11] PHILIP N, LEISHMAN S J, BANDARA H, et al. Polyphenol-rich cranberry extracts modulate virulence of Streptococcus mutans-Candida albicans biofilms implicated in the pathogenesis of early childhood caries [J]. Pediatric Dentistry, 2019, 41(1): 56-62.
[12] 王小玉, 王玉芝, 马丽, 等. 柠檬精油对变异链球菌及白假丝酵母菌生长及牙菌斑生物膜形成的抑制作用 [J]. 山东医药, 2017, 57(8): 47-49.
[13] 李贺. 芍药总多糖对口腔致龋细菌毒力因子作用的体外实验研究 [D]. 乌鲁木齐:新疆医科大学, 2013.
[14] CIANDRINI E, CAMPANA R, BAFFONE W. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface [J]. Archives of Oral Biology, 2017, 78: 48-57.
[15] LIN X, CHEN X, TU Y, et al. Effect of probiotic Lactobacilli on the growth of Streptococcus mutans and multispecies biofilms isolated from children with active caries [J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017, 23: 4 175.
[16] WU C C, LIN C T, WU C Y, et al. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation [J]. Molecular oral microbiology, 2015, 30(1): 16-26.
[17] 张妍. 抗龋齿益生菌性质及其作用机制的研究 [D]. 哈尔滨:东北农业大学, 2019.
[18] HASAN S, DANISHUDDIN M, KHAN A U. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies [J]. BMC Microbiology, 2015, 15(1): 1.
[19] REN Z, CUI T, ZENG J, et al. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence [J]. Antimicrobial Agents and Chemotherapy, 2016, 60(1): 126-135.
[20] SHANG D, LIANG H, WEI S, et al. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity [J]. Applied Microbiology and Biotechnology, 2014, 98(20): 8 685-8 695.
[21] ROSSONI R D, DOS SANTOS VELLOSO M, DE BARROS P P, et al. Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms [J]. Microbial Pathogenesis, 2018, 123: 361-367.
[22] BARBOSA J O, ROSSONI R D, VILELA S F G, et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans [J]. PLoS One, 2016, 11(3):e0150457.
[23] 张秋香, 黄银, 姚沛琳, 等. 植物乳杆菌FB-T9抑制变异链球菌及其生物膜形成的研究 [J]. 食品与生物技术学报, 2019, 38(9): 17-26.
[24] NOBBS A H, LAMONT R J, JENKINSON H F. Streptococcus adherence and colonization [J]. Microbiol Mol Biol Rev, 2009, 73(3): 407-450.
[25] CUGINI C, SHANMUGAM M, LANDGE N, et al. The role of exopolysaccharides in oral biofilms [J]. Journal of Dental Research, 2019, 98(7): 739-745.
[26] ZHANG Q, QIN S, HUANG Y, et al. Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rats [J]. Journal of Oral Microbiology, 2020, 12(1): 1 703 883.
[27] MARSH P D,HEAD D A,DEVINE D A. Dental plaque as a biofilm and a microbial community-implications for treatment[J]. Journal of Oral Biosciences,2015,57(4): 185-191.
[28] METWALLI K H, KHAN S A, KROM B P, et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation [J]. PLoS pathogens, 2013, 9(10):e1003616.
[29] WIMPENNY J, MANZ W, SZEWZYK U. Heterogeneity in biofilms [J]. FEMS Microbiology Reviews, 2000, 24(5): 661-671.
[30] 王桢, 李阳, 车帅, 等. 北极海洋沉积物高抗氧化活性菌株的筛选及其多样性分析 [J]. 海洋科学进展, 2015, 33(1): 63-70.
[1] 姜甜, 陆文伟, 崔树茂, 张灏, 赵建新. 静电喷雾干燥微囊化乳双歧杆菌BL03[J]. 食品与发酵工业, 2021, 47(7): 27-33.
[2] 王楠, 田晗, 张文晓, 白筱翠, 肖纯凌. 两株具有潜在益生作用的人源链球菌的安全性评价[J]. 食品与发酵工业, 2021, 47(5): 12-16.
[3] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[4] 李霞, 陈海鸥, 韩淑芳, 陆凤莹, 周玉恒, 单杨, 李静. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业, 2021, 47(2): 45-50.
[5] 王瑛, 林钰清, 李爱军, 林启豪, 薛雪, 王洪飞, 陈琬颖. 重金属危害机制及益生菌清除重金属机制研究进展[J]. 食品与发酵工业, 2020, 46(3): 281-292.
[6] 迟珺曦, 雷文平, 刘孝芳, 刘成国. 干酪乳杆菌LC-7在牛乳中的生长及发酵特性[J]. 食品与发酵工业, 2020, 46(22): 208-213.
[7] 阿热爱·巴合提, 武瑞赟, 肖梦圆, 李平兰, 谭春明. 益生菌的生理功能及作用机理研究进展[J]. 食品与发酵工业, 2020, 46(22): 270-275.
[8] 沈兴旺, 李婉麒, 赵创谦, 崔鑫儒, 陈紫颖, 汤柳茜, 张汇, 熊智强, 艾连中, 夏永军. 高品质牦牛发酵乳的成熟特性[J]. 食品与发酵工业, 2020, 46(20): 40-45.
[9] 杨树荣, 朱慧越, 乌翛冰, 孙姗姗, 司倩, 张秋香, 王琳琳, 王刚, 赵建新, 张灏, 陈卫. 副干酪乳杆菌缓解由洛哌丁胺诱导的小鼠便秘的差异[J]. 食品与发酵工业, 2020, 46(2): 25-31.
[10] 桑跃, 冯海红, 蒙璐, 刘力, 刘作文, 葛绍阳, 金君华. 充氮包装和储藏温度对益生菌粉储藏稳定性的影响[J]. 食品与发酵工业, 2020, 46(19): 143-147.
[11] 任然, 唐善虎, 李思宁, 马国丽, 刘慧伦. 四株益生菌对发酵酸奶保质期理化特性和益生菌数的影响[J]. 食品与发酵工业, 2020, 46(18): 85-90.
[12] 钱成, 王鸿超, 张秋香, 赵建新, 张灏, 陈卫, 陆文伟. 含共轭亚油酸功能组分配方对慢性肠炎的改善作用[J]. 食品与发酵工业, 2020, 46(17): 87-93.
[13] 唐洪玉, 宋馨, 夏永军, 艾连中, 王光强. 益生菌中胆盐水解酶作用机制研究进展[J]. 食品与发酵工业, 2020, 46(13): 286-292.
[14] 附俊杰, 李丽, 刘军, 廖挺, 帖余, 温雪瓶. 丁酸梭菌及其代谢产物在食品加工中的应用[J]. 食品与发酵工业, 2020, 46(13): 293-298.
[15] 肖怀秋, 李玉珍, 林亲录, 赵谋明, 刘军. 益生菌喷雾干燥影响机制及优化策略分析[J]. 食品与发酵工业, 2019, 45(8): 244-251.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn