Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (7): 271-276    DOI: 10.13995/j.cnki.11-1802/ts.023464
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
菊粉及其调节宿主肠道菌群机制的研究进展
赵孟良1,2,3, 任延靖1,2,3*
1(青海大学 农林科学院,青海 西宁,810016);
2(青海省蔬菜遗传与生理重点实验室,青海 西宁,810016);
3(青海大学 省部共建三江源生态与高原农牧业国家重点实验室 青海 西宁,81001)
Research progress of inulin and its mechanism in regulating host intestinal flora
ZHAO Mengliang1,2,3, REN Yanjing1,2,3*
1(Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China);
2(Qinghai Key Laboratory of Vegetable Genetics and Physiology, Xining 810016, China);
3(State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)
下载:  HTML   PDF (1246KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人民生活质量提高,国民对健康饮食的重视程度日益增强。以菊粉为代表的低聚糖,作为功能性成分添加到保健食品中,具有良好的应用前景和极大的发展潜力。文章介绍了菊粉的来源、结构、分离提取,并从调节抗氧化性、调节微生物群落、抗炎、基因调控及聚合度方面综述了菊粉调节宿主肠道菌群结构的机制,以期为菊粉的精深加工和利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵孟良
任延靖
关键词:  菊粉  肠道菌群  机制    
Abstract: With the improvement of human life quality, the importance of healthy diet attracts more and more attention. There is a good prospect for the market of the functional health foods, which consist oligosaccharides, such as inulin, as an important component. The origin, structure, isolation and extraction of inulin were introduced in this review. The mechanism of inulin in regulating host intestinal flora structure was summarized from the perspectives of antioxidant activity, microbiology population, anti-inflammatory, gene regulation and degree of polymerization of inulin.
Key words:  inulin    intestinal flora    mechanisms
收稿日期:  2020-01-28                出版日期:  2020-04-15      发布日期:  2020-05-19      期的出版日期:  2020-04-15
基金资助: 国家自然基金项目(31960602);青海省科学技术厅重点实验室项目(2020-ZJ-Y02);青海省自然科学青年基金项目(2019-ZJ-979Q);青海省农林科学院基金项目(2018-NKY-006;2018-NKY-008)
作者简介:  博士,助理研究员(任延靖副研究员为通信作者,E-mail: renyan0202@163.com)
引用本文:    
赵孟良,任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
ZHAO Mengliang,REN Yanjing. Research progress of inulin and its mechanism in regulating host intestinal flora[J]. Food and Fermentation Industries, 2020, 46(7): 271-276.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023464  或          http://sf1970.cnif.cn/CN/Y2020/V46/I7/271
[1] 朱立猛. 菊粉对小鼠肠道微生物调节作用的研究[D]. 烟台:中国科学院烟台海岸带研究所,2017.
[2] ROSE V. Ueber eine eigenthümliche vegetabilische substanz[J]. Neues Allgemein Chemistry, 1804, 3: 217-219.
[3] THOMSON T. A System of Chemistry[M]. (Fourth ed) London, UK. 1817.
[4] SINGH R S, SINGH R P. Production of fructooligosaccharides from inulin by endoinulinases and their prebiotic potential[J]. Food Technol. Biotechnol, 2010, 48: 435-450.
[5] SINGH R S, CHAUHAN K. Inulinase production from a new inulinase producer, Penicillium oxalicum BGPUP-4[J]. Biocatalysis and Agricultural Biotechnology, 2017, 9: 1-10.
[6] MENSINK M A, FRIJLINK H W, VAN DER VOORT MAARSCHALK K, et al. Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics[J]. Carbohydrate Polymers, 2015, 130: 405-419.
[7] KORURI S S, BANERJEE D, CHOWDHURY R, et al. Studies on prebiotic food additive (inulin) in Indian dietary fibre sources-garlic (Allium sativum), wheat (Triticum spp.), oat (Avena sativa) and dalia (Bulgur)[J]. International Journal of Pharmacy and Pharmaceutical, 2014, 6(9): 278-282.
[8] ZHANG N, HUANG X S, ZENG Y H, et al. Study on prebiotic effectiveness of neutral garlic fructan in vitro[J]. Food Science and Human Wellness, 2013, 2(3-4): 119-123.
[9] NAIR K, KHARB S, THOMPKINSON D K. Inulin dietary fiber with functional and health attributes-a review[J]. Food Reviews International, 2010, 26(2): 189-203.
[10] BEIRÃO-DA-COSTA M L, ISABEL M, JANUÁRIO N, et al. Characterisation of inulin from chicory and salsify cultivated in portugal[J]. Alimentos E Nutrição, 2005, 16(3): 221-225.
[11] BRKLJAGˇA J, BODROZˇA-SOLAROV M, KRULJ J, et al. Quantification of inulin content in selected accessions of Jerusalem artichoke (Helianthus tuberosus L.)[J]. Helia, 2014, 37(60): 105-112.
[12] KOSASIH W, PUDJIRAHARTI S, RATNANINGRUM D, et al. Preparation of inulin from dahlia tubers[J]. Procedia Chemistry, 2015, 16: 190-194.
[13] LEYVA-PORRAS C, LÓPEZ-PABLOS A L, ALVAREZ-SALAS C, et al. Physical properties of inulin and technological applications[M]. Springer International Publishing: Polysaccharides Bioactivity Biotechnol,2015: 959-984.
[14] NWAFOR I C, SHALE K, ACHILONU M C. Chemical composition and nutritive benefits of chicory (Cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement[J]. The Scientific World Journal, 2017: 7343928.
[15] ALVAREZ F P P, JURADO T B, CALIXTO C M, et al. Prebiotic inulin/oligofructose in YacÓŁ root (Smallanthus sonchifolius), phytochemistry and standardization as basis for clinical and pre-clinical research[J]. Rev gastroenterologia Peru, 2008, 28: 22-27.
[16] ZEAITER Z, REGONESI M E, CAVINI S, et al. Extraction and Characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health[J]. Bio Med Research International, 2019:1-8.
[17] SHANG H M, ZHOU H Z, YANG J Y, et al. In vitro and in vivo antioxidant activities of inulin[J]. Plos One, 2018, 13(2): e0192273. DOI: 10.1371/journal.pone.0192273.
[18] SHANG H, ZHANG Y, GUO H, et al. Effects of inulin supplementation in laying hens diet on the antioxidant capacity of refrigerated stored eggs[J]. International Journal of Biological Macromolecules, 2019, 43: e13022.
[19] NOOSHKAM M, FALAH F, ZAREIE Z, et al. Antioxidant potential and antimicrobial activity of chitosan-inulin conjugates obtained through the Maillard reaction[J]. Food Sci Biotechnol, 2019, 28(6): 1 861-1 869.
[20] LE BASTARD Q, CHAPELET G, JAVAUDIN F, et al. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2019. DOI.org/10.1007/s10096-019-03721-w.
[21] WANG X, SHI L L, WANG X P, et al. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis[J]. International Journal of Biological Macromolecules, 2019, 141: 1 013-1 021.
[22] OLIVEIRA B C M, BRESCIANI K D S, WIDMER G. Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis[J]. PLoS Negl Trop Dis, 2019, 13(9): 0007411. DOI: 10.1101/620203.
[23] LI J K, ZHANG X, CAO L Y, et al. Three inulin-type fructans from Codonopsis pilosula (Franch.) Nannf. roots and their prebiotic activity on Bifidobacterium longum[J]. Molecules, 2018, 23: 3123.DOI:10.3390/molecules23123123.
[24] JOSÉ BERALDI E, CARVALHO BORGES S, LOSI ALVES DE ALMEIDA F,et al. Colonic neuronal loss and delayed motility induced by high-fat diet occur independently of changes in the major groups of microbiota in Swiss mice[J]. Neurogastroenterology & Motility, 2020, 32:e13745.
[25] 张璐. 高脂饮食中添加菊粉对小鼠肠道菌群及其代谢产物的影响[D]. 北京:清华大学, 2017: 10-15.
[26] SASAKI H, MIYAKAWA H, WATANABE A, et al. Mice microbiota composition changes by inulin feeding with a long fasting period under a two-meals-per-day schedule[J]. Nutrients, 2019, 11: 2802. DOI: 10.3390/nu11112802.
[27] MCLOUGHLIN R F, BERTHON B S, JENSEN M E, et al. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis[J]. The American Journal of Clinical Nutrition, 2017, 106(3): 930-945.
[28] CAI Y, LIU W, LIN Y X, et al. Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function[J]. Journal of Gastroenterology and Hepatology, 2019, 34(9): 1 554-1 562.
[29] VIDELA S, VILASECA J, ANTOLÍN M, et al. Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat[J]. American Journal of Gastroenterology, 2001, 96: 1 486-1 493.
[30] CHERBUT C, MICHEl C, LECANNU G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats[J]. Journal of Nutrition, 2003, 133(1): 21-27.
[31] HOENTJEN F, WELLING G W, HARMSEN H J M, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation[J]. Inflammatory Bowel Diseases, 2005, 11(11): 977-985.
[32] XUE J, LI X R, LIU P, et al. Inulin and metformin ameliorate polycystic ovary syndrome via anti-in ammation and modulating gut microbiota in mice[J]. Endocrine Journal, 2019, 66 (10): 859-870.
[33] VALCHEVAA R, KOLEVAB P, MARTÍNEZ I, et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels[J]. Gut Microbes, 2019, 10(3): 334-357.
[34] AKRAM W, GARUD N, JOSHI R. Role of inulin as prebiotics on inflammatory bowel disease[J]. Drug Discoveries & Therapeutics. 2019, 13(1):1-8.
[35] GUO X, TANG R, YANG S, et al. Rutin and its combination with inulin attenuate gut dysbiosis, the inflammatory status and endoplasmic reticulum stress in paneth cells of obese mice induced by high-fat diet[J]. Front Microbiol, 2018, 9: 2651.
[36] LI K, ZHANG L, XUE J, et al. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and 2 modulating gut microbiota in db/db mice[J]. Food & Function, 2019, 10: 1 915-1 927.
[37] KADEN-VOLYNETS V, GÜNTHER C, ZIMMERMANN J, et al. Deletion of the Casp8 gene in mice results in ileocolitis, gut barrier dysfunction and malassimilation, which can be partially attenuated by inulin or sodium butyrate[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2019, 317(4): 493-507.
[38] SONG X F, ZHONG L, LYU N, et al. Inulin can alleviate metabolism disorders in ob/ob mice by partially restoring leptinrelated pathways mediated by gut microbiota[J]. Genomics Proteomics Bioinformatics, 2019, 17(1): 64-75.
[39] 刘冰. 不同聚合度菊粉对健康肠道微生物群落结构影响的研究[D]. 兰州: 兰州大学, 2018: 8-11.
[40] ZHU Z Z, HUANG Y Q, LUO X, et al. Modulation of lipid metabolism and colonic microbial diversity of high-fatdiet C57BL/6 mice by inulin with different chain lengths[J]. Food Research International, 2019, 123: 355-363.
[41] ASTÓ E, MÉNDEZ I, RODRÍGUEZ-PRADO M, et al. Effect of the degree of polymerization of fructans on ex vivo fermented human gut microbiome[J]. Nutrients, 2019, 11: 1 293.
[42] MELILLI K G, BRANCA F, SILLITTI C, et al. Germplasm evaluation to obtain inulin with high degree of polymerization in Mediterranean environment[J]. Natural Product Research, 2020, 34(1):187-191.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[3] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[4] 胡丽丽, 董庆利, 夏阳, 张帅帅, 杨静远, 王真, 刘阳泰. 单增李斯特菌生物膜形成及其调控机制研究进展[J]. 食品与发酵工业, 2021, 47(8): 276-282.
[5] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[6] 翟秀超, 冯文旭, 吴殿辉, 王璐, 陆健. 植物精油对真菌微生物抑制作用的研究进展[J]. 食品与发酵工业, 2021, 47(6): 259-266.
[7] 肖叶, 叶精勤, 阎俊, 施文正, 卢瑛. 生物加工技术对水产品主要过敏原的致敏性消减作用研究进展[J]. 食品与发酵工业, 2021, 47(6): 274-279.
[8] 葛茵, 向沙沙, 张亚林, 郑谊青, 李勉, 朱炫. 木糖醇益生功能研究进展[J]. 食品与发酵工业, 2021, 47(5): 267-272.
[9] 盖昱梓, 孙静娴, 黄刚, 金刚. 苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 288-293.
[10] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[11] 宗原, 刘登峰, 刘以安. 基于改进蚁狮优化算法的黄酒发酵过程模型的参数辨识[J]. 食品与发酵工业, 2021, 47(2): 153-159.
[12] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[13] 谢佳雨, 张雯, 欧杰. 植物源天然产物对黄曲霉和黄曲霉毒素B1的抑制作用研究进展[J]. 食品与发酵工业, 2021, 47(1): 317-326.
[14] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[15] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn