Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (11): 138-145    DOI: 10.13995/j.cnki.11-1802/ts.023479
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
大豆不溶性膳食纤维体外发酵产短链脂肪酸的研究
王贲香1, 贺阳1, 蒋海芹2, 文连奎1*
1(吉林农业大学 食品科学与工程学院,吉林 长春,130118)
2(市场监督管理局,河北 唐山,063200)
Fermentation of soybean insoluble dietary fiber to produceshort-chain fatty acids
WANG Bixiang1, HE Yang1, JIANG Haiqin2, WEN Liankui1*
1(Department of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China)
2(Administration for Market Regulation, Tangshan 063200, China)
下载:  HTML   PDF (7273KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究大豆不溶性膳食纤维 (soybean insoluble dietary fiber, SIDF) 不同时间体外发酵产短链脂肪酸 (short-chain fatty acids,SCFAs) 的含量变化,采用乳杆菌(Lactobacillus)、两歧双歧杆菌(Bifidobacterium bifidum)、粪肠球菌(Enterococcus faecalis)、大肠杆菌(Escherichia coli)4种外源肠道菌对SIDF进行体外发酵,分别在不同发酵时间测定发酵液的pH值,通过气相色谱测定不同发酵时间产生的SCFAs含量。4种外源肠道菌体外发酵SIDF均使发酵液pH呈下降趋势,并且在发酵24 h时pH基本保持稳定。发酵过程中,4种外源肠道菌产生的乙酸含量最多,丙酸次之,丁酸最少。两歧双歧杆菌在发酵24 h 时产乙酸、丙酸含量最多,分别为(4.05±0.024)、(0.13±0.014) g/L;乳杆菌在发酵24 h时,产生的丁酸最多,为(0.082±0.001) g/L。两歧双歧杆菌发酵产生的SCFAs总量最大。SIDF可通过外源肠道菌体外发酵产生SCFAs,并且不同发酵时间产生的SCFAs含量有差异。两歧双歧杆菌发酵SIDF产SCFAs能力最强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王贲香
贺阳
蒋海芹
文连奎
关键词:  大豆  不溶性膳食纤维  气相色谱  短链脂肪酸    
Abstract: To investigate the production of short-chain fatty acids (SCFAs) from soybean insoluble fiber (SIDF) in fermentation, SIDF was fermented by Lactobacillus sp., Bifidobacterium bifidum, Enterococcus faecalis, and Escherichia coli, respectively. The pH value of the fermentation broth was measured, and the content of SCFAs were determined by gas chromatography at different time points. In fermentation of SIDF by 4 exogenous intestinal bacteria, the pH value of the fermentation broth first decreased, and then remained stable after 24 h fermentation. During the fermentation by 4 exogenous intestinal bacteria, the yield of acetic acid was the highest , followed by propionic acid and butyric acid. The content of acetic acid and propionic acid produced by B. bifidum each reached its maxima after 24 h fermentation, which was (4.05±0.024) g/L and (0.13±0.014) g/L, respectively. The content of butyric acid produced by Lactobacillus sp. was the maxima of (0.082±0.001) g/L after 24 h fermentation. The total SCFAs produced by B. bifidum fermentation was the highest. SIDF was fermented by exogenous intestinal bacteria to produce SCFAs, and the content of SCFAs produced varied with the fermentation time. B. bifidum had the strongest ability to produce SCFAs by fermenting SIDF.
Key words:  soybean    insoluble dietary fiber    gas chromatography    short-chain fatty acids
收稿日期:  2020-02-01                出版日期:  2020-06-15      发布日期:  2020-06-24      期的出版日期:  2020-06-15
基金资助: 吉林农业大学科研启动基金项目(201801);吉林省教育厅“十三五”科学技术项目(JJKH20190930KJ)
作者简介:  硕士研究生(文连奎教授为通讯作者,E-mail:wenliankui@163.com)
引用本文:    
王贲香,贺阳,蒋海芹,等. 大豆不溶性膳食纤维体外发酵产短链脂肪酸的研究[J]. 食品与发酵工业, 2020, 46(11): 138-145.
WANG Bixiang,HE Yang,JIANG Haiqin,et al. Fermentation of soybean insoluble dietary fiber to produceshort-chain fatty acids[J]. Food and Fermentation Industries, 2020, 46(11): 138-145.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023479  或          http://sf1970.cnif.cn/CN/Y2020/V46/I11/138
[1] 陈月安.膳食纤维与人体健康[J].内蒙古民族大学学报, 2009, 15(2): 142-143.
[2] PRESTMO G, RUPEREZ P, ESPINOSA M I, et al. The effects of okara on rat growth, cecal fermentation, and serum lipids [J]. European Food Research and Technology, 2006, 225(5-6): 925-928.
[3] ZHU Y, CHU J, LU Z, et al. Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran [J]. Journal of Cereal Science, 2018, 79: 456-461.
[4] MULLISH B H, PECHLIVANIS A, BARKER G F, et al. Functional microbiomics: evaluation of gut microbiota-bile acid metabolism interactions in health and disease [J]. Methods, 2018, 149: 49-58.
[5] CHANG S, CUI X, GUO M, et al. Insoluble dietary fiber from pear pomace can prevent high-fat diet induced obesity in rats mainly by improving the structure of gut microbiota [J]. Journal of Microbiology & Biotechnology, 2017, 27(4): 856-867.
[6] PATURI G, BUTTS C A, MONRO J A, et al. Effects of blackcurrant and dietary fibers on large intestinal health biomarkers in rats [J]. Plant Foods for Human Nutrition, 2018, 73(1): 54-60.
[7] 韩伟,庄绪会,张云鹏,等.大豆乳清粉对小鼠肠道菌群及其产生短链脂肪酸的影响[J].大豆科学, 2019, 38(1): 104-110.
[8] RÍOS-COVIÁN D, PATRICIA R M, ABELARDO M, et al. Intestinal short chain fatty acids and their link with diet and human health [J]. Frontiers in Microbiology, 2016, 7: 185.
[9] HU J L, NIE S P, MIN F F, et al. Polysaccharide from seeds of plantago asiatica l. increases short-chain fatty acid production and fecal moisture along with lowering ph in mouse colon [J]. Journal of Agricultural and Food Chemistry, 2012, 60(46): 11 525-11 532.
[10] MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease [J]. Cell Host & Microbe, 2018, 23(6): 705-715.
[11] KOH A, DE F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites [J]. Cell, 2016, 165(6): 1 332-1 345.
[12] 俞东宁.不同抗性淀粉理化特性及其体外发酵的研究[D].杭州: 浙江工商大学, 2018.
[13] DING Q, NIE S, HU J, et al. In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum [J]. Food Hydrocolloids, 2017, 63: 646-655.
[14] GAMAGE H K A H, TETU S G, CHONG R W W, et al. Fiber supplements derived from sugarcane stem, wheat dextrin and psyllium husk have different in vitro effects on the human gut microbiota [J]. Frontiers in Microbiology, 2018, 9: 1 618.
[15] KONG Q, DONG S, GAO J, et al. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota [J]. International Journal of Biological Macromolecules, 2016, 91:867-871.
[16] HUANG J Q, WANG Q, XU Q X, et al. In vitro fermentation of O acetyl arabinoxylan from bamboo shavings by human colonic microbiota [J]. International Journal of Biological Macromolecules, 2019, 125: 27-34.
[17] 杨东明,赵鑫婧,赵德明,等.短链脂肪酸在宿主能量代谢方面的调节作用[J].中国微生态学杂志, 2019, 31(9): 1 100-1 104.
[18] 聂启兴,胡婕伦,钟亚东,等.几类不同食物对肠道菌群调节作用的研究进展[J].食品科学, 2019, 40(11): 321-330.
[19] LANGE K, HUGENHOLTZ F, JONATHAN M C, et al. Comparison of the effects of five dietary fibers on mucosal transcriptional profiles, and luminal microbiota composition and SCFA concentrations in murine colon [J]. Molecular Nutrition & Food Research, 2015, 59(8): 1 590-1 602.
[20] 季晓梅.嗜酸乳杆菌对β-乳球蛋白过敏小鼠肠道菌群及其代谢的影响[D].哈尔滨: 东北农业大学, 2015.
[21] CUMMINGS J H, MACFARLANE G T. The control and consequences of bacterial fermentation in the human colon [J]. Journal of Applied Microbiology, 2008, 70(6): 443-459.
[22] SCHROEDER B O, BIRCHENOUGH G M H, STAHLMAN M, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration [J]. Cell Host Microbe, 2018, 23: 27-40.
[23] 吴洪斌,王永刚,李烁,等.不同处理番茄皮膳食纤维对体外发酵体系短链脂肪酸的影响[J].食品工业科技, 2012, 33(4): 209-212;226.
[24] 赵兰涛.全谷物对肠道菌群益生作用的研究[D].无锡: 江南大学, 2013.
[25] 陈蕾.苦荞对肠道菌群影响的研究[D].上海: 上海师范大学, 2016.
[26] 连晓蔚,彭喜春.不同肠道菌群利用低聚异麦芽糖体外发酵产短链脂肪酸的初步研究[J].食品与发酵工业, 2011, 37(6):39-41.
[27] 刘露,张雁,魏振承,等.肠道益生菌体外发酵山药低聚糖产短链脂肪酸的研究[J].食品科学技术学报, 2019, 37(4): 49-56.
[28] 连晓蔚.肠道菌群利用几种膳食纤维体外发酵产短链脂肪酸的研究[D].广州: 暨南大学, 2011.
[29] 方建东.抗性淀粉对小鼠肠道菌群的影响以及作用机制的研究[D].杭州: 浙江工商大学, 2014.
[30] 彭喜春,庞秋芳,吴希阳,等.直肠菌群对两种不溶性膳食纤维的体外发酵[J].卫生研究, 2010, 39(5): 611-614.
[1] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[2] 姚文生, 蔡莹暄, 刘登勇, 张明成, 马双玉, 杨晶, 苟紫慧, 张浩. 基于HS-GC-IMS和HS-SPME-GC-MS的熏鸡腿肉挥发性风味成分分析[J]. 食品与发酵工业, 2021, 47(9): 253-261.
[3] 胡雪, 李锦松, 唐永清, 张良, 钱宇, 赵金松. 基于GC-MS结合化学计量学的浓香型白酒分类方法[J]. 食品与发酵工业, 2021, 47(8): 212-217.
[4] 坚乃丹, 李文丽, 张祝莉, 朱霞, 鲜学海, 牛伊宁. 基于气相色谱-串联质谱技术测定植物组织中糖与糖醇[J]. 食品与发酵工业, 2021, 47(8): 224-229.
[5] 曹栩菡, 黄小军, 叶麟, 潘才惠. QuEChERS-超滤净化结合GC-QQQ测定酿酒大曲中多种农药残留量[J]. 食品与发酵工业, 2021, 47(7): 238-243.
[6] 李晓朋, 曾欢, 林柳, 陶宁萍, 徐逍, 丛建华. 不同煎炸用油制备河豚鱼汤挥发性风味成分的差异性[J]. 食品与发酵工业, 2021, 47(7): 251-259.
[7] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[8] 杨娟, 罗玮倩, 何曼源. 大豆蛋白/蛋清蛋白复合凝胶特性的研究[J]. 食品与发酵工业, 2021, 47(6): 134-138.
[9] 黄丕苗, 王智荣, 陈湑慧, 杨兵, 施月, 阚建全. 迷迭香提取物对白鲢鱼肉腥味的影响及其脱腥条件优化[J]. 食品与发酵工业, 2021, 47(6): 176-183.
[10] 袁国亿, 王春晓, 何宇淋, 邱树毅. 酶标仪比色法检测浊米酒中高级醇含量[J]. 食品与发酵工业, 2021, 47(6): 221-227.
[11] 蒋彰, 周志磊, 姬中伟, 韩吉臣, 毛健, 周哲敏. 即墨黄酒煮糜工艺对挥发性物质的影响[J]. 食品与发酵工业, 2021, 47(5): 86-91.
[12] 乐彩虹, 陶宁萍, 徐逍. 暗纹东方鲀鱼皮胶原蛋白肽脱苦前后苦味物质的变化[J]. 食品与发酵工业, 2021, 47(4): 87-95.
[13] 毛永强, 李彦虎, 贠建民, 何奎, 王睿, 武淑娟. 传统陇西腊肉制作过程中挥发性风味物质变化分析[J]. 食品与发酵工业, 2021, 47(4): 144-152.
[14] 戚军, 陈亚, 徐颖, 熊国远, 梅林. 超声辅助炖制对黄羽鸡汤香味的影响[J]. 食品与发酵工业, 2021, 47(4): 153-158.
[15] 钟冬莲, 莫润宏, 王蕤, 喻宁华, 沈丹玉, 汤富彬. 反相聚合物固相萃取-气相色谱-质谱法测定植物油中角鲨烯和四种植物甾醇[J]. 食品与发酵工业, 2021, 47(4): 231-236.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn