Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (11): 199-209    DOI: 10.13995/j.cnki.11-1802/ts.023555
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
通电加热过程中凡纳滨对虾虾肉糜核苷酸及关联产物的变化
谷文静1, 金英善2, 郑睿林3, 程裕东1, 金银哲1*
1(上海海洋大学 食品学院食品热加工工程中心,上海,201306)
2(扬州大学 生物科学与技术学院,江苏 扬州,277600)
3(北伦敦济州国际学校,韩国 济州,697600)
Study on the changes of nucleotide and related compounds in mincedLitopenaeus vannamei during ohmic heating
GU Wenjing1, JIN Yingshan2, YERIM Jung3, CHENG Yudong1, JIN Yinzhe1*
1(College of Food Science and Technology, Engineering Research Center of Food Thermal-processingTechnology, Shanghai Ocean University, Shanghai 201306, China)
2(College of Bioscience and Technology, Yangzhou University, Yangzhou 277600, China)
3(NLCS JEJU London Collegiate School, Jeju 697600, Korea)
下载:  HTML   PDF (6507KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 探究通电加热过程中凡纳滨对虾虾肉糜电导率及呈味核苷酸的变化,考察通电加热对虾肉糜滋味的影响。测定了不同通电加热温度(25、40、55、65、75、85和95 ℃)和金属离子添加物(1、5和10 mmol/L的Zn2+、Cu2+、Al3+和Fe3+)下凡纳滨对虾虾肉糜的电导率(50 Hz~20 kHz)以及核苷酸及关联产物的含量。结果表明:其电导率与频率成对数关系,与温度(低于65 ℃)呈线性关系(P<0.05);添加金属离子会增加凡纳滨对虾虾肉糜的电导率,10 mmol/L Fe3+ 是虾肉糜样品的最佳导体。通电加热中,一磷酸鸟苷(guanosine monophosphate,GMP)含量始终处于较高水平(>60 mg/100 g);次黄嘌呤(hypoxanthine,Hx)和次黄嘌呤核苷(inosine,HxR)含量始终处于较低水平(<7 mg/100 g);高温时腺苷(adenosine,AdR)含量更高。通电加热纯虾的温度应控制在55~65 ℃,有利于其鲜味的产生。金属离子处理的虾肉糜在不同加热温度下均产生少量Hx和大量肌苷酸(inosine monophosphate,IMP),IMP的产生与金属离子浓度之间没有显著的相关性(P>0.05)。添加10 mmol/L Fe3+并通电加热至85 ℃时产生的IMP含量最高[(201.39±3.83) mg/100 g]。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谷文静
金英善
郑睿林
程裕东
金银哲
关键词:  通电加热  核苷酸  凡纳滨对虾  滋味  金属离子    
Abstract: The changes in the electrical conductivity (EC) and taste nucleotides of Litopenaeus vannamei shrimp with the treatment of ohmic heating (OH) were investigated in order to investigate the effect of OH on the taste of Litopenaeus vannamei. The EC (50 Hz~20 kHz) and the contents of nucleotides in the shrimp under different temperatures (25, 40, 55, 65, 75, 85, and 95 ℃) and metal ion additives (1, 5, and 10 mmol/L Zn2+, Cu2+, Al3+, Fe3+) were measured. The results show that the EC of minced shrimp has a logarithmic relationship with frequency and a linear relationship with temperature (lower than 65 ℃) (P<0.05). The EC of shrimp with added metal ions was higher than that of pure shrimp and 10 mmol/L Fe3+ was the best conductor for shrimp. In the treatment of OH, the guanosine monophosphate(GMP) content was always at a high level (more than 60 mg/100 g), while the Hypoxanthine(Hx) and Inosine(HxR) contents were always at a low level (less than 7 mg/100 g). Adenosine(AdR) was accumulated at high temperatures. The best temperature of heating for pure shrimp by OH was between 55~65 ℃, which was conducive to the production of umami taste. The shrimp treated with metal ions produced a small amount of Hx and a large amount of inosine monophosphate(IMP) at different temperatures. There was no significant correlation between IMP production and metal ion concentration (P>0.05). The IMP content in shrimp was the highest (201.39±3.83 mg/100 g) when 10 mmol/L Fe3+ was added and ohmic heated to 85 ℃. This study provided the optimized treatment condition for Litopenaeus vannamei using OH.
Key words:  ohmic heating    nucleotide    Litopenaeus vannamei    taste    metal ion
收稿日期:  2020-02-28                出版日期:  2020-06-15      发布日期:  2020-06-24      期的出版日期:  2020-06-15
基金资助: 上海高校知识服务平台资助项目(上海海洋大学) (ZF1206)
作者简介:  硕士研究生(金银哲副教授为通讯作者,E-mail:yzjin@shou.edu.cn)
引用本文:    
谷文静,金英善,郑睿林,等. 通电加热过程中凡纳滨对虾虾肉糜核苷酸及关联产物的变化[J]. 食品与发酵工业, 2020, 46(11): 199-209.
GU Wenjing,JIN Yingshan,YERIM Jung,et al. Study on the changes of nucleotide and related compounds in mincedLitopenaeus vannamei during ohmic heating[J]. Food and Fermentation Industries, 2020, 46(11): 199-209.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023555  或          http://sf1970.cnif.cn/CN/Y2020/V46/I11/199
[1] GUO W, LLAVE Y, JIN Y, et al. Mathematical modeling of ohmic heating of two-component foods with non-uniform electric properties at high frequencies[J]. Innovative Food Science & Emerging Technologies, 2017, 39:63-78.
[2] MARRA F, ZELL M, LYNG J G, et al. Analysis of heat transfer during ohmic processing of a solid food[J]. Journal of Food Engineering, 2009, 91(1):56-63.
[3] JAKÓB A, BRYJAK J, WÓJTOWICZ H, et al. Inactivation kinetics of food enzymes during ohmic heating[J]. Food Chemistry, 2010, 123(2):369-376.
[4] CHO W I, JI Y Y, CHUNG M S. Pasteurization of fermented red pepper paste by ohmic heating[J]. Innovative Food Science & Emerging Technologies, 2016, 34:180-186.
[5] SHIRSAT N, LYNG J G, BRUNTON N P, et al. Conductivities and ohmic heating of meat emulsion batters[J]. Journal of Muscle Foods, 2010, 15(2):121-137.
[6] CAPPATO L P, FERREIRA M V S, GUIMARAES J T, et al. Ohmic heating in dairy processing: Relevant aspects for safety and quality[J]. Trends in Food Science & Technology, 2017, 62:104-112.
[7] 张烈, 程裕东, 金银哲. 通电加热下频率、温度对草鱼鱼块和鱼皮电导率的影响[J]. 食品工业科技, 2017,38(17):71-75.
[8] SARANG S, SASTRY K S, KNIPE L. Electrical conductivity of fruits and meats during ohmic heating[J]. Journal of Food Engineering, 2008, 87(3):351-356.
[9] 邱伟强, 谢晶, 陈舜胜, 等. 虾类冷藏期间ATP关联产物含量的变化及其降解途径的研究[J]. 现代食品科技, 2015,31(10):103-109.
[10] YE W, TIAN L M, YAO J, et al. Study on the biochemical characteristics of AMP deaminase[J]. Science and Technology of Food Industry, 2012, 33(1):164-158.
[11] OCAÑO-HIGUERA V M, MAEDA-MARTÍNEZ A N, MARQUEZ-RÍOS E, et al. Freshness assessment of ray fish stored in ice by biochemical, chemical and physical methods[J]. Food Chemistry, 2011, 125(1):49-54.
[12] 尹涛, 刘敬科, 赵思明, 等. 冷藏和热加工对鲢肌肉主要滋味活性物质的影响[J]. 华中农业大学学报, 2015, 34(1):108-114.
[13] ZHANG R, QIU W, ZHANG M, et al. Effects of different heating methods on the contents of nucleotides and related compounds in minced Pacific white shrimp and Antarctic krill[J]. LWT - Food Science and Technology, 2018, 87:142-150.
[14] WANG C, LIU R, LIU Y, et al. Enzymatic characteristics of acid phosphatase in muscle of freshwater fish[J]. Journal of Huazhong Agricultural University, 2010, 29(4): 518-521.
[15] LI D, QIN N, ZHANG L, et al. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4℃: An in vivo study[J]. Food Chemistry, 2016, 211:812-818.
[16] GB 2760—2014 食品添加剂使用标准[S]. 北京:中国标准出版社,2014.
[17] QIU W Q, CHEN S S, XIE J, et al. Analysis of 10 nucleotides and related compounds in Litopenaeus vannamei during chilled storage by HPLC-DAD[J]. LWT-Food Science and Technology, 2016, 67:187-193.
[18] ZELL M, LYNG J G, CRONIN D A, et al. Ohmic cooking of whole beef muscle: Optimisation of meat preparation[J]. Meat Science, 2009, 81(4):693-698.
[19] SHYNKARYK M V, JI T, ALVAREZ V B, et al. Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz) [J]. Journal of Food Science, 2010, 75(7):493-500.
[20] KULSHRESTHA S A, SASTRY S K. Low-frequency dielectric changes in cellular food material from ohmic heating: Effect of end point temperature[J]. Innovative Food Science & Emerging Technologies, 2006, 7(4):257-262.
[21] LIU L, LLAVE Y, JIN Y, et al. Electrical conductivity and ohmic thawing of frozen tuna at high frequencies[J]. Journal of Food Engineering, 2017, 197:68-77.
[22] DARVISHI H, KHOSTAGHAZA M H, NAJAFI G. Ohmic heating of pomegranate juice: Electrical conductivity and pH change[J]. Journal of the Saudi Society of Agricultural Sciences, 2013, 12(2):101-108.
[23] 陈超, 邱伟强, 福冈美香, 等. 通电加热过程中鰤鱼的介电损失率变化[J]. 食品与发酵工业, 2017,43(4):97-102.
[24] 李修渠, 李里特, 李法德. 肉的电导率研究[J]. 肉类工业, 2001(12):19-21.
[25] SMAN R G M V D. Model for electrical conductivity of muscle meat during Ohmic heating[J]. Journal of Food Engineering, 2017, 208:37-47.
[26] MELTEM S, GÜLEN Y T, ABRODÍMOV K. Quality of low-fat meatballs containing legume flours as extenders[J]. Meat Science, 2005, 70(1):99-105.
[27] AROCKIADOSS T, XAVIER F P, PRABHU B K, et al. Electrical conductivity as a tool for identification of metal contaminated fish protein[J]. Journal of Food Engineering, 2008, 88(3):405-410.
[28] UEDA E K, GOUT P W, MORGANTI L. Current and prospective applications of metal ion-protein binding[J]. Journal of Chromatography A, 2003, 988(1):1-23.
[29] YIP T T, NAKAGAWA Y, PORATH J. Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography[J]. Analytical Biochemistry, 1989, 183:159-171.
[1] 钱韻芳, 林婷, 曹维, 叶晶鑫, 谢晶, 杨胜平. 模拟冷链流通中温度波动对腐败希瓦氏菌的生长及其腐败产物的影响[J]. 食品与发酵工业, 2021, 47(9): 100-106.
[2] 张迪, 吉宏武, 陈浩, 刘书成, 毛伟杰. 脂质对凡纳滨对虾热风干制品香气特性的影响[J]. 食品与发酵工业, 2021, 47(7): 189-196.
[3] 王文霞, 杨悦, 张慧君, 刘博, 徐婷婷. 马铃薯果胶流变特性的研究[J]. 食品与发酵工业, 2021, 47(2): 63-69.
[4] 岳翠男, 秦丹丹, 蔡海兰, 王治会, 李琛, 李延升, 杨普香. 赣北工夫红茶滋味特征及关键化合物分析[J]. 食品与发酵工业, 2021, 47(2): 260-267.
[5] 李博莹, 许津阁, 许洪高, 崔亚娟, 毛立科. 电渗析调控芦笋汁离子组成及对感官品质影响的研究[J]. 食品与发酵工业, 2020, 46(22): 84-90.
[6] 王逸鑫, 吴涵, 黄海源, 沈思远, 施文正. 超声波辅助腌制对青鱼腌制品品质的影响[J]. 食品与发酵工业, 2020, 46(22): 142-146.
[7] 左勇, 陈静, 张晶, 许努谦. 外源添加物对桑椹果酒挥发酸及风味的影响[J]. 食品与发酵工业, 2020, 46(20): 171-177.
[8] 胡丹, 许艳顺, 姜启兴, 夏文水, 余达威. 盐酒组合腌制对冷藏草鱼片质构和滋味品质的影响[J]. 食品与发酵工业, 2020, 46(19): 154-160.
[9] 唐瑛蔓, 赵美玲, 黄雅慧, 王红梅, 何春雷. 绿茶主要滋味特征与消费者偏好的关系[J]. 食品与发酵工业, 2020, 46(17): 242-246.
[10] 丁玉庭, 张静, 周绪霞, 赵培城. 常见食品及调味品中嘌呤类组分含量分析及分布规律[J]. 食品与发酵工业, 2020, 46(15): 276-281.
[11] 李璇, 韩四海, 李鑫玲, 潘春蕊, 陶玉欣, 刘建学. 洛阳传统绿豆酸浆营养成分分析与品质多样性[J]. 食品与发酵工业, 2020, 46(14): 228-233.
[12] 张玲, 林荣, 宋祖坤, 王男, 杨海麟. 启动子串联及改造提高FAD为辅基的葡萄糖脱氢酶在Bacillus subtilis中的表达[J]. 食品与发酵工业, 2019, 45(8): 15-21.
[13] 潘聪, 李占东, 苑鹏, 张大力, 段盛林, 夏凯, 周文萱, 赵可心, 于伟厚. 高核苷酸酵母水解物对脂多糖诱导RAW264.7细胞免疫调节的影响[J]. 食品与发酵工业, 2019, 45(7): 8-14.
[14] 赵佳伟, 敖晓琳, 蔡义民, 刘书亮, 陈安均, 万胡, 徐飞, 王帆, 何金阳. 金属离子对植物乳杆菌RS66CD生物膜形成及环境耐受性的影响[J]. 食品与发酵工业, 2019, 45(21): 46-52.
[15] 张秀洁, 郭全友, 王鲁民, 姜朝军. 养殖大黄鱼滋味和气味物质组成及评价[J]. 食品与发酵工业, 2019, 45(20): 242-249.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn