Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 166-173    DOI: 10.13995/j.cnki.11-1802/ts.023598
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
硫化氢和一氧化氮的交互作用对香蕉采后品质及抗氧化体系的影响
崔文玉1, 许新月1, 张仁堂2, 弓志青1, 王文亮1*, 王延圣1*
1(山东省农业科学院农产品研究所,山东省农产品精深加工技术重点实验室,农业部新食品资源加工重点实验室,山东 济南,250100)
2(山东农业大学 食品科学与工程学院,山东 泰安,271000)
Effects of interaction of hydrogen sulfide and nitric oxide on postharvestquality and antioxidant system of banana
CUI Wenyu1, XU Xinyue1, ZHANG Rentang2, GONG Zhiqing1, WANG Wenliang*, WANG Yansheng1*
1(Institute of Agro-Products processing Science and Technology; Key Laboratory of Agro-Products Processing Technology of Shandong Province,SAAS,Shandong;Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture,SAAS,Jinan 250100,China)
2(College of food Science and Engineering, Shandong Agricultural University, Tai’an 271000,China)
下载:  HTML   PDF (3418KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫化氢(H2S)和一氧化氮(NO)作为重要的信号分子,同其他信号分子共同构成一个复杂的植物信号网络。为进一步探讨H2S、NO及其交互作用对香蕉低温贮藏下果实品质和抗氧化体系的影响,采用H2S处理、NO处理、c-PTIO(NO抑制剂)和蒸馏水4种处理方式处理后将香蕉贮藏于7 ℃下15 d。实验结果表明:H2S处理可以显著提高NO含量。使用H2S和NO处理都可以保持香蕉果实硬度、抑制丙二醛含量和相对电导率的上升、降低冷害指数、维持香蕉果皮较好的光泽度和鲜亮的颜色,其中NO和H2S处理效果优于蒸馏水和c-PTIO处理。NO和H2S处理都能提高香蕉果实超氧化物歧化酶、过氧化氢酶、过氧化物酶、抗坏血酸过氧化物酶和苯丙氨酸解氨酶等抗氧化酶活性,从而降低组织的氧化水平并抑制膜脂氧化进程。NO和H2S处理在贮藏前中期效果显著,而c-PTIO处理效果最差。可见,H2S和NO的交互作用在诱导香蕉耐冷性机制中扮演重要角色。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔文玉
许新月
张仁堂
弓志青
王文亮
王延圣
关键词:  香蕉  硫化氢  一氧化氮  冷害  抗氧化能力    
Abstract: As important signaling molecules, hydrogen sulfide (H2S) and nitric oxide (NO) form a complex plant signal network with other signal molecules. In order to further explore the effects of H2S, NO and their interactions on banana's quality and antioxidant system in low temperature storage, bananas were stored at 7 ℃ for 15 d after treatment with 1 mmol/L H2S, 2 mmol/L NO, 0.03 mmol/L c-PTIO (NO inhibitor) and distilled water. The results show that H2S can significantly increase the NO content. Both H2S and NO treatments can maintain the hardness of banana fruits, inhibit the increase of malondialdehyde (MDA) content and relative conductivity, reduce the chilling injury index, and maintain good gloss and smoothness of banana peel Bright colors. The effect of NO and H2S treatment is better than that of distilled water and c-PTIO treatment. Both NO and H2S treatment can increase the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid levels in banana fruits, as well as antioxidant enzyme activities such as oxidase (APX) and phenylalanine ammonia lyase (PAL), thereby reduces tissue oxidation levels and inhibiting membrane lipid oxidation processes. Among them, the effects of NO and H2S treatment were significant in the pre-storage period, while the effect of c-PTIO treatment was the worst. It can be seen that the interaction of H2S and NO plays an important role in inducing cold tolerance in bananas.
Key words:  banana    H2S    NO    chilling injury    oxidation resistance
收稿日期:  2020-02-11                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
基金资助: 国家自然科学基金(31801608)
作者简介:  硕士研究生(王文亮研究员和王延圣助理研究员为共同通讯作者, E-mail:cywwl@163.com;sdnky_wys@163.com)
引用本文:    
崔文玉,许新月,张仁堂,等. 硫化氢和一氧化氮的交互作用对香蕉采后品质及抗氧化体系的影响[J]. 食品与发酵工业, 2020, 46(13): 166-173.
CUI Wenyu,XU Xinyue,ZHANG Rentang,et al. Effects of interaction of hydrogen sulfide and nitric oxide on postharvestquality and antioxidant system of banana[J]. Food and Fermentation Industries, 2020, 46(13): 166-173.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023598  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/166
[1] 罗自生,杜瑞雪,王延圣,等.硫氢化钠诱导采后香蕉耐冷性的研究[J].现代食品科技,2015,31(2):205-210.
[2] ZHANG T, CHE F, ZHANG H, et al. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the Cm CBF1 and Cm CBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit[J]. Postharvest Biology and Technology, 2017, 127: 88-98.
[3] FOYER C H, NOCTOR G. Oxidant and antioxidant signalling in plants a re-evaluation of the concept of oxidative stress in a physiological context [J]. Plant, Cell and Environment, 2005, 28(8): 1 056-1 071.
[4] FOYER C H, NOCTOR G. Ascorbate and glutathione: the heart of the redox hub [J]. Plant Physiology, 2011, 155(1): 2-18.
[5] WILSON L G, BRESSAN R A, FILNER P, et al. Light-dependent emission of hydrogen sulfide from plants[J]. Plant Physiology, 1978, 61(2):184-189.
[6] CARLOS GARCÃ-MATA, LAMATTINA L, HYDROGEN SULPHIDE. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling[J]. New Phytologist, 2010, 188(4):977-984.
[7] SCUFFI D, ALVAREZ C, LASPINA N, et al. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure[J]. Plant Physiology, 2014, 166(4):2 065-2 076.
[8] SAMI F, FAIZAN M, FARAZ A, et al. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress[J]. Nitric Oxide, 2018, 73:22-38.
[9] 郭芹, 吴斌,王吉德,等.NO处理对番木瓜采后贮藏性的影响[J]. 食品科学, 2011,32(4):227-231.
[10] ZHANG X, SHEN L, LI F, et al. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit[J]. Journal of Agricultural and Food Chemistry, 2011, 59(17):9 351-9 357.
[11] YAMASAKI H, COHEN M F. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies[J]. Nitric Oxide-Biology and Chemistry, 2016:55-56; 91-100.
[12] WANG Y Q, LI L, CUI W T, et al. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway[J]. Plant and Soil, 2012,351(1-2):107-119.
[13] LISJAK M, SRIVASTAVA N, TEKLIC T, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation[J]. Plant Physiology and Biochemistry, 2010, 48(12): 931-935.
[14] HANCOCK J T, WHITEMAN M, et al. Hydrogen sulfide and cell signaling: Team player or referee?[J]. Plant Physiology and Biochemistry, 2014, 78:37-42.
[15] 周万海,师尚礼,寇江涛,等.一氧化氮对NaCl胁迫下苜蓿种子萌发的影响[J]. 核农学报,2012,26(4):710-716.
[16] PONGPRASERT N, SEKOZAWA Y, SUGAYA S, et al. A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel[J]. Scientia Horticulturae, 2011, 130(1):73-77.
[17] EUM H L, HWANG D K, LEE S K, et al. Nitric oxide reduced chlorophyll degradation in broccoli (Brassica oleracea L. var. italica) florets during senescence[J]. Food Science and Technology International, 2009, 15(3):223-228.
[18] 陈发河,张美姿,吴光斌.NO处理延缓采后枇杷果实木质化劣变及其能量代谢的关系[J]. 中国农业科学,2014,47(2):2 425-2 434.
[19] 范蓓,杨杨,王锋,等.外源NO处理对采后芒果耐冷性的影响[J]. 核农学报,2013,27(6):800-804.
[20] XU M, DONG J, ZHANG M, et al. Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage[J]. Postharvest Biology & Technology, 2011, 65:5-12.
[21] 王倩.H2S延长梨果实及甘薯块根采后贮藏期的抗氧化机制研究[D].合肥:合肥工业大学,2012.
[22] GARCIÍ-LIMONES C, HERVÁS A, NAVAS-CORTÉS J A, et al. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp.ciceris[J]. Physiological and Molecular Plant Pathology, 2002, 61(6):325-337.
[23] FU P, WANG W, HOU L, et al. Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L.[J]. Acta Societatis Botanicorum Poloniae, 2013, 82(4):295-302.
[24] YINGSANGA P, SRILAONG V, KANLAYANARAT S, et al. Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and See-Chompoo[J]. Postharvest Biology and Technology, 2008, 50(2-3):164-168.
[25] 刘琦琦,徐娟,王黎明,等.外源H2S对“尖脆”枣果实贮藏品质及抗氧化能力的影响[J].北方园艺,2018(22):135-142.
[26] 刘畅,徐玉娟,李升锋,等.龙眼果肉中多酚氧化酶和过氧化物酶性质研究[J].食品工业科技,2008,29(7):102-104.
[27] QIAN C L,HE Z P, ZHAO Y Y,et al. Maturity-dependent chilling tolerance regulated by the antioxidative capacity in postharvest cucumber (Cucumis sativus L.) fruit[J]. Journal of the Science of Food & Agriculture, 2013, 93(3):626-633.
[28] MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10):490-498.
[29] LUO Z, LI D, DU R, et al. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content[J]. Scientia Horticulturae, 2015, 183:144-151.
[30] LI D, LIMWACHIRANON J, LI L, et al. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit[J]. Food Chemistry, 2016, 208:272-278.
[31] HU L Y, HU S L, WU J, et al. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits[J]. Journal of Agricultural and Food Chemistry, 2012, 60(35):8 684-8 693.
[32] XIA Y X, CHEN T, QIN G Z, et al. Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit[J]. Postharvest Biology and Technology, 2016, 111:15-24.
[33] YANG S Y, SU X G, PRASAD K N, et al. Qxidation and peroxidation of postharvest banana fruit during softening [J].Pakistan Journal of Botany,2008,40(5):2 023-2 029.
[34] WU B, GUO Q, LI Q, et al. Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance[J]. Postharvest Biology and Technology, 2014, 92:157-163.
[35] LIU Y J, JIANG H F, ZHAO Z G, et al. Nitric oxide synthase like activity-dependent nitric oxide production protects against chilling-induced oxidative damage in Chorispora bungeana suspension cultured cells[J]. Plant Physiology & Biochemistry, 2010, 48(12):936-944.
[36] SHI H, YE T, CHAN Z, et al. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.)[J]. Plant Physiology and Biochemistry, 2014, 74:99-107.
[37] HE Y, HUANG B. Differential responses to heat stress in activities and isozymes of four antioxidant enzymes for two cultivars of Kentucky bluegrass contrasting in heat tolerance[J]. Journal of the American Society for Horticultural Science, 2010, 135(2):116-124.
[38] SONG L L, GAO H Y, CHEN H J, et al. Effect of short-term anoxic treatment on antioxidant ability and membrane integrity of postharvest kiwifruit during storage [J]. Food Chemistry, 2009, 114(4): 1 216-1 221.
[39] SHAN C J, ZHANG S L, LI D F, et al. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress[J]. Acta Physiologiae Plantarum, 2011, 33(6):2 533-2 540.
[40] SHAN C, DAI H, SUN Y. Hydrogen sulfide protects wheat seedlings against copper stress by regulating the ascorbate and glutathione metabolism in leaves[J]. Australian Journal of Crop Science, 2012, 6(2):248-254.
[41] HU K, WANG Q, HU L, et al. Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth[J]. PLoS ONE, 2014, 9(1):e85524.
[42] DIAO Q N, SONG Y J, SHI D M, et al. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling[J]. Journal of Zhejiang University Science B, 2016, 17(12):916-930.
[43] LIANG Y, ZHENG P, LI S, et al. Nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes[J]. Entia Horticulturae, 2018, 229:207-214.
[1] 刘晓晨, 杨光, 杨波, 周盛敏. 光照萌发对亚麻籽油中脂质伴随物含量的影响[J]. 食品与发酵工业, 2021, 47(9): 208-214.
[2] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[3] 周明, 朱晓娟, 尧梅香, 卢剑青, 陈卡卡, 朱凤妮, 陈金印, 沈勇根. ‘修水化红’甜橙成熟过程中黄酮含量与相关酶活性及抗氧化能力的关系[J]. 食品与发酵工业, 2021, 47(4): 60-67.
[4] 张珮, 王银红, 李高阳, 单杨, 朱向荣. 基于近红外光谱的桃果实冷害识别分析[J]. 食品与发酵工业, 2021, 47(2): 254-259.
[5] 郑海武, 雷蕾, 李正英, 赵雪平, 张美枝, 李婷, 黄海英, 李晓娟, 王春燕. 本土优良酿酒酵母的酿造学特性[J]. 食品与发酵工业, 2020, 46(8): 118-122.
[6] 赵昱瑄, 张敏, 姜雪, 胡均如, 李佳乐, 盖晓阳. 短时热处理对低温逆境下黄瓜不同部位的冷害及活性氧代谢影响[J]. 食品与发酵工业, 2020, 46(7): 180-187.
[7] 赵治巧, 曾莉, 万玉军, 王刚, 唐自钟, 布同良, 陈惠, 罗丽娟. 酵母菌-植物乳杆菌复合发酵菠萝酵素生物活性的初步研究[J]. 食品与发酵工业, 2020, 46(7): 110-115.
[8] 杨晓月, 郜海燕, 钟迪颖, 张润光, 张有林. 秦薯5号甘薯营养成分测定及贮前低温处理对贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(7): 201-206.
[9] 孔燕, 杨蕊羽, 张明慧, 付云云, 廖丽, 姜林君, 陈安均. 酵母菌株及陈酿时间对桑葚酒主要理化指标和抗氧化能力的影响[J]. 食品与发酵工业, 2020, 46(6): 67-72.
[10] 姜雪, 张敏, 赵昱瑄, 郝爽, 李佳乐, 胡均如, 盖晓阳, 厉建国. 不同初始机体温度对热水处理西葫芦果实低温贮藏品质和活性氧代谢的影响[J]. 食品与发酵工业, 2020, 46(5): 231-239.
[11] 李欣宇, 孙雨露, 徐岩, 张荣珍, 唐柯. 不同陈酿容器及陈酿时间对黑果腺肋花楸(Aronia melanocarpa (Michx.) Elliott)酒单体酚及抗氧化性的影响[J]. 食品与发酵工业, 2020, 46(23): 14-20.
[12] 王梦洋, 王大红, 宋鹏辉, 原江锋. 多菌种发酵的板栗红枣果醋品质分析[J]. 食品与发酵工业, 2020, 46(18): 143-147.
[13] 王浩鹏, 程俊侠, 郭俊彤, 张祺祺, 杨娜, 王凯杰, 邵红军. 速饮茶饮料的多酚组成、抗氧化特性及摄入量评估[J]. 食品与发酵工业, 2020, 46(17): 180-188.
[14] 胡翔, 李洛欣, 罗堃, 冯建国, 郑淘, 曾艺琼, 辛济标, 孙俊宇, 郑慧, 杨勇. 两种淀粉类辅料对真空微波干燥蓝莓多酚含量及抗氧化能力的影响[J]. 食品与发酵工业, 2020, 46(16): 183-189.
[15] 张志敏, 冉旭勇, 侯发民, 李建新, 李晓明, 章建军. 短波紫外线辐射处理对刺梨果实贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(16): 201-207.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn