Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (11): 17-22    DOI: 10.13995/j.cnki.11-1802/ts.023690
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
通过敲除解淀粉芽胞杆菌表面活性剂基因促进S-腺苷甲硫氨酸合成
姜聪, 郭爱玲, 魏雪团*
(华中农业大学 食品科学技术学院,湖北 武汉,430070)
Enhancement of S-adenosylmethionine synthesis in Bacillus amyloliquefaciensdeleted surfactant synthesis
JIANG Cong, GUO Ailing, WEI Xuetuan*
(College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)
下载:  HTML   PDF (1894KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 S-腺苷甲硫氨酸(S-adenosylmethionine,SAM),可作为营养补充剂用于改善人体健康,对人体新陈代谢至关重要。在解淀粉芽胞杆菌从头合成SAM的过程中,脂肽类表面活性剂常导致能量损失、发酵起泡等问题,不利于SAM的积累。通过研究敲除解淀粉芽孢杆菌脂肽类表面活性剂合成基因ituDsrfAC,探究该类基因对SAM从头合成的影响。实验结果显示:单敲除ituD基因并未对菌体生长和SAM合成产生显著的影响,单敲除srfAC基因促进SAM产量提高了23%,对菌体生长影响不显著;叠加敲除ituDsrfAC后,SAM产量提高32%,且对菌体生长没有显著性影响。研究首次证实敲除脂肽类表面活性剂基因可显著提高SAM产量,研究结果为SAM的代谢工程育种提供了新策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜聪
郭爱玲
魏雪团
关键词:  S-腺苷甲硫氨酸  解淀粉芽胞杆菌  脂肽类表面活性剂  基因敲除  代谢工程    
Abstract: S-Adenosylmethionine (SAM) is highly important for human metabolism, and it can be used as a nutritional supplement to improve human health. During the de novo synthesis of SAM by Bacillus amyloliquefaciens, lipopeptide surfactants usually lead to energy loss and fermentation foaming, which may hinder the accumulation of SAM. In this study, the lipopeptide surfactants synthesis genes of ituD and srfAC were deleted and effects of these genes on SAM synthesis were investigated. The fermentation results showed that deletion of ituD had no significant effect on cell growth and SAM synthesis. On the other hand, deletion of srfAC promoted the SAM titer by 23%, and no significant effect was found on the cell growth. After double mutation of ituD and srfAC, the SAM titer was increased by 32%, and the cell growth was not affected significantly. This study confirms that blocked lipopeptide surfactants synthesis can significantly enhance the SAM production, which provides a new strategy for metabolic engineering breeding of SAM.
Key words:  S-adenosylmethionine    Bacillus amyloliquefaciens    lipopeptide surfactant    gene knockout    metabolic engineering
收稿日期:  2020-02-19                出版日期:  2020-06-15      发布日期:  2020-06-24      期的出版日期:  2020-06-15
基金资助: 国家重点研发计划(2019YFA0906400)
作者简介:  硕士研究生(魏雪团副教授为通讯作者,E-mail:weixuetuan@mail.hzau.edu.cn)
引用本文:    
姜聪,郭爱玲,魏雪团. 通过敲除解淀粉芽胞杆菌表面活性剂基因促进S-腺苷甲硫氨酸合成[J]. 食品与发酵工业, 2020, 46(11): 17-22.
JIANG Cong,GUO Ailing,WEI Xuetuan. Enhancement of S-adenosylmethionine synthesis in Bacillus amyloliquefaciensdeleted surfactant synthesis[J]. Food and Fermentation Industries, 2020, 46(11): 17-22.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023690  或          http://sf1970.cnif.cn/CN/Y2020/V46/I11/17
[1] PANZA F, FRISARDI V, CAPURSO C, et al. Polyunsaturated fatty acid and S-adenosylmethionine supplementation in predementia syndromes and Alzheimer's disease: a review[J]. The Scientific World Journal, 2009, 9: 373-389.
[2] KRUGLOVA M P, GRACHEV S V, BULGAKOVA P O, et al. Low S-adenosylmethionine/S-adenosylhomocysteine ratio in urine is associated with chronic kidney disease[J]. Laboratory Medicine, 2020, 51(1): 80-85.
[3] SINNER E K, LICHSTRAHL M S, LI R, et al. Methylations in complex carbapenem biosynthesis are catalyzed by a single cobalamin-dependent radical S-adenosylmethionine enzyme[J]. Chemical Communications, 2019, 55(99): 14 934-14 937.
[4] CAMPONESCHI F, MUZZIOLI R, CIOFI-BAFFONI S, et al. Paramagnetic 1H NMR spectroscopy to investigate the catalytic mechanism of radical S-adenosylmethionine enzymes[J]. Journal of Molecular Biology, 2019, 431(22): 4 514-4 522.
[5] RAIKHELSON K L, KONDRASHINA E A. Аdеmethionine in the treatment of fatigue in liver diseases: a systematic review[J]. Terapevticheskii Arkhiv, 2019, 91(2): 134-142.
[6] LANDGRAF B J, MCCARTHY E L, BOOKER S J. Radical S-adenosylmethionine enzymes in human health and disease[J]. Annual Review of Biochemistry, 2016, 85: 485-514.
[7] MARTÍNEZ-UÑA M, VARELA-REY M, MESTRE D, et al. S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease[J]. Journal of Hepatology, 2015, 62(3): 673-681.
[8] MATO J M, MARTÍNEZ-CHANTAR M L, LU S C. S-adenosylmethionine metabolism and liver disease[J]. Annals of Hepatology, 2015, 12(2): 183-189.
[9] KANAI M, MIZUNUMA M, FUJII T, et al. A genetic method to enhance the accumulation of S-adenosylmethionine in yeast[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1 351-1 357.
[10] CHU J, QIAN J, ZHUANG Y, et al. Progress in the research of S-adenosyl-L-methionine production[J]. Applied Microbiology and Biotechnology, 2013, 97(1): 41-49.
[11] CHEN Y, XU D, FAN L, et al. Manipulating multi-system of NADPH regulation in Escherichia coli for enhanced S-adenosylmethionine production[J]. RSC Advances, 2015, 5(51): 41 103-41 111.
[12] RUAN L, LI L, ZOU D, et al. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle[J]. Biotechnology for Biofuels, 2019, 12(1): 211.
[13] 卢彩鸽, 张殿朋, 刘霆, 等. 解淀粉芽胞杆菌 MH71 的生防活性及脂肽类抗生素基因检测[J].植物保护, 2015, 41(3): 12-18.
[14] HOEKS F W, VAN WEES-TANGERMAN C, LUYBEN K C A M, et al. Stirring as foam disruption (SAFD) technique in fermentation processes[J]. The Canadian Journal of Chemical Engineering, 1997, 75(6): 1 018-1 029.
[15] 郭丽清. 苏云金芽孢杆菌中脂肽类抗生素 Iturins 的研究[D].福州:福建农林大学, 2010.
[16] LEÃES F L, VELHO R V, CALDAS D G G, et al. Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11[J]. Antonie Van Leeuwenhoek, 2013, 104(1): 149-154.
[17] 刘丽霞. Surfactin合成酶相关基因研究[D].南京:南京农业大学, 2012.
[18] WANG X, CHEN Z, FENG H, et al. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis[J]. Microbial Cell Factories, 2019, 18(1): 141.
[19] YAN L, LIANG X, HUANG H, et al. S-adenosylmethionine affects cell cycle pathways and suppresses proliferation in liver cells[J]. Journal of Cancer, 2019, 10(18): 4 368-4 379.
[20] ZHANG K, DUAN X, WU J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system[J]. Scientific Reports, 2016, 6(1): 1-11.
[1] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[2] 曲丽莎, 于文文, 吕雪芹, 李江华, 堵国成, 刘龙. 生物-化学法合成维生素D的研究进展[J]. 食品与发酵工业, 2021, 47(1): 276-284.
[3] 郑鹏, 张孟娟, 黄思瑶, 康新玥, 陈叶福. 过表达乙酰-CoA相关基因提高出芽短梗霉liamocins合成能力[J]. 食品与发酵工业, 2020, 46(9): 25-30.
[4] 李亿, 秦艳, 申乃坤, 朱婧, 梁戈, 王青艳. 酿酒酵母pdc基因缺陷菌株的构建及其丙酮酸发酵特性[J]. 食品与发酵工业, 2020, 46(8): 7-13.
[5] 闵钰, 魏雪团. 解淀粉芽胞杆菌中speE基因在亚精胺合成中的功能鉴定[J]. 食品与发酵工业, 2020, 46(7): 69-74.
[6] 周胜虎, 毛银, 邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
[7] 朱福周, 芦楠, 李宇虹, 林蓓蓓, 郑颖楠, 王子申, 陈宁, 张成林. 增强回补途径对谷氨酸棒状杆菌合成L-异亮氨酸的影响[J]. 食品与发酵工业, 2020, 46(2): 11-17.
[8] 胡立涛, 王阳, 李佳莲, 周思延, 王道安, 尹国斌, 刘京京, 康振, 陈坚. 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020, 46(18): 1-7.
[9] 蒋秋琪, 吕雪芹, 崔世修, 刘延峰, 堵国成, 刘龙. 代谢工程改造毕赤酵母发酵生产谷胱甘肽[J]. 食品与发酵工业, 2020, 46(17): 9-14.
[10] 杨帆, 苏卜利, 王永红, 张玉莲, 黄桦瑞, 张秀秀, 朱红惠. 启动子对重组大肠杆菌合成番茄红素能力的影响[J]. 食品与发酵工业, 2020, 46(17): 27-32.
[11] 季安营, 魏雪团. 改造非磷酸转移酶葡萄糖转运途径强化解淀粉芽胞杆菌合成L-酪氨酸[J]. 食品与发酵工业, 2020, 46(15): 27-31.
[12] 傅奇, 林俊杰, 冯亚栋, 肖玉娟. 16S与gyrB基因联合建树快速鉴定一株解淀粉芽胞杆菌[J]. 食品与发酵工业, 2020, 46(12): 116-120.
[13] 颜文斌, 张晓梅, 史劲松, 许正宏. rhtAtyrP对谷氨酸棒杆菌产L-丝氨酸的影响分析[J]. 食品与发酵工业, 2020, 46(11): 9-16.
[14] 刘洁, 王宏涛, 钱和, 徐建中, 张伟国. 基于代谢工程构建产β-胡萝卜素重组毕赤酵母[J]. 食品与发酵工业, 2020, 46(11): 32-37.
[15] 牛腾飞, 李江华, 堵国成, 刘龙, 陈坚. 微生物法合成N-乙酰氨基葡萄糖及其衍生物的研究进展[J]. 食品与发酵工业, 2020, 46(1): 274-279.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn