Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 30-35    DOI: 10.13995/j.cnki.11-1802/ts.023810
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
重组大肠杆菌的高密度培养及在丙谷二肽生产中的应用
裴绪泽, 李益民, 杜聪, 袁文杰*
(大连理工大学 生物工程学院,辽宁 大连,116024)
High-cell-density cultivation of the recombinant E. coli and itsapplication in the production of Ala-Gln
PEI Xuze, LI Yimin, DU Cong, YUAN Wenjie*
(School of Biotechnology, Dalian University of Technology, Dalian 116024, China)
下载:  HTML   PDF (3965KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以表达α-酯酰基转移酶的重组大肠杆菌作为全细胞催化剂,连接丙氨酸甲酯盐酸盐与谷氨酰胺合成丙谷二肽,是目前生产丙谷二肽最理想的方法。利用高密度发酵法,能提高微生物的生产量,降低二肽生产成本。首先,在摇瓶水平下,利用响应面模型对于基础培养基碳源、氮源、无机盐等因素进行研究,在此基础上,对补料培养的重要因素如补料种类、补料方式等进行研究。最后,利用高密度培养的重组大肠杆菌作为全细胞催化剂进行丙谷二肽的合成。确定了最佳半合成培养基的组成为:葡萄糖质量浓度为10 g/L、混合氮源质量浓度为24 g/L、KH2PO4质量浓度为4.62 g/L、K2HPO4质量浓度为25.08 g/L;确定了溶氧反馈补料的最佳补料控制条件,在30 h内,菌体OD620值最高达到了67,是优化前摇瓶培养的14倍。丙谷二肽的质量浓度达到34.56 g/L,生产效率约为7 g/(L·min)。研究为高效低成本生产丙谷二肽奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴绪泽
李益民
杜聪
袁文杰
关键词:  丙谷二肽  转酯酶  高密度发酵  过程控制  优化设计    
Abstract: L-alanyl-L-glutamine (Ala-Gln) is an important functional dipeptide, which has important value in food, medicine and health care products. Using recombinant Escherichia coli to express α-amino acid ester acyltransferase as whole-cell catalyst, which linked alanine methyl ester hydrochloride with glutamine to synthesize Ala-Gln, was an ideal method for the production of Ala-Gln. The high-cell-density cultivation could increase the proliferation concentration of microorganisms and reduce the cost. Firstly, the medium of E. coli BL21-pet29a-SsAET strain which expressing α-amino acid ester acyltransferase was optimized using response surface methodology based on the basic culture medium composition, such as carbon source, nitrogen source, and inorganic salt in flask-shaking experiment. Then, the important factors for fed-batch cultivation, such as pH, feeding medium and feeding mode, were investigated in fermenter. Finally, the recombinant E. coli by the high-density cultivation as whole-cell catalyst were used for the synthesis of dipeptide. The results showed that the optimum concentration of the semi-synthetic medium was: glucose 10 g/L, mixed nitrogen source 24 g/L, KH2PO4 4.62 g/L and K2HPO4 25.08 g/L. And the optimum feeding method was controlled using the automatic feedback by dissolved oxygen against pH-controlled. When the semi-synthetic medium was used with automatic feedback by dissolved oxygen, the OD620 value of the bacteria reached up to 67 at 30 h, which was 14 times better than that of flask culture. When the high density-culture of recombinant E.coli was used to synthesize dipeptide, the concentration of Ala-Gln reached 34.56g /L and the production efficiency was 7 g/(L·min), which could further enhance its potential for industrial applications.
Key words:  L-alanyl-L-glutamine    ester acyltransferase    high cell density fermentation    process control    optimal design
收稿日期:  2020-03-02                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
作者简介:  硕士研究生(袁文杰副教授为通讯作者,E-mail:ywj@dlut.edu.cn)
引用本文:    
裴绪泽,李益民,杜聪,等. 重组大肠杆菌的高密度培养及在丙谷二肽生产中的应用[J]. 食品与发酵工业, 2020, 46(13): 30-35.
PEI Xuze,LI Yimin,DU Cong,et al. High-cell-density cultivation of the recombinant E. coli and itsapplication in the production of Ala-Gln[J]. Food and Fermentation Industries, 2020, 46(13): 30-35.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023810  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/30
[1] WANG T, ZHANG Y R, LIU X H, et al. Strategy for the biosynthesis of short oligopeptides: green and sustainable chemistry [J]. Biomolecules, 2019, 9(11):733.
[2] NOVA M V, NOTHNAGEL L, THURN M, et al. Development study of pectin/Surelease (R) solid microparticles for the delivery of L-alanyl-L-glutamine dipeptide [J]. Food Hydrocolloids, 2019, 89:921-932.
[3] ODA S, MULLANEY T, BOWLES A J, et al. Safety studies of L-alanyl-L-glutamine (L-AG) [J]. Regulatory Toxicology and Pharmacology, 2008, 50(2):226-238.
[4] YAGASAKI M, HASHIMOTO S. Synthesis and application of dipeptides; current status and perspectives [J]. Applied Microbiology and Biotechnology, 2008, 81(1):13-22.
[5] WANG Z E, WU D, ZHENG L W, et al. Effects of glutamine on intestinal mucus barrier after burn injury [J]. American Journal of Translational Research, 2018, 10(11):3 833-3 846.
[6] WANG J, LI Y, QI Y. Effect of glutamine-enriched nutritional support on intestinal mucosal barrier function, MMP-2, MMP-9 and immune function in patients with advanced gastric cancer during perioperative chemotherapy [J]. Oncology Letters, 2017, 14(3):3 606-3 610.
[7] ANDREWS F J, GRIFFITHS R D. Glutamine: essential for immune nutrition in the critically ill [J]. British Journal of Nutrition, 2002, 87(S1):S3-S8.
[8] 范晓光, 洪翔, 朱新雅, 等. 二肽的生物合成及应用研究进展[J].发酵科技通讯, 2016, 45(4):199-203.
[9] 唐果. N(2)-L-丙氨酰-L-谷氨酰胺二肽的合成与反应研究[D]. 厦门: 厦门大学, 2004.
[10] 杨晓勇. L-丙氨酰-L-谷氨酰胺的合成及工艺研究[D]. 杭州: 浙江大学, 2015.
[11] 郭明, 胡昌华.生物转化—从全细胞催化到代谢工程[J]. 中国生物工程杂志,2010,30(4):110-115.
[12] RIBEIRO L F, AMARELLE V, ALVES L F, et al. Genetically engineered proteins to improve biomass conversion: new advances and challenges for tailoring biocatalysts [J]. Molecules, 2019, 24(16):2 879.
[13] YOKOZEKI K, HARA S. A novel and efficient enzymatic method for the production of peptides from unprotected starting materials [J]. Journal of Biotechnology, 2005, 115(2):211-220.
[14] HIRAO Y, MIHARA Y, KIRA I, et al. Enzymatic production of L-Alanyl-L-glutamine by recombinant E. coli expressing alpha-amino acid ester acyltransferase from Sphingobacterium siyangensis [J]. Bioscience Biotechnology and Biochemistry, 2013, 77(3):618-623.
[15] LI Y M, YUAN W J, GAO J Q, et al. Production of L-alanyl-L-glutamine by recycling E. coli expressing alpha-amino acid ester acyltransferase [J]. Bioresource Technology, 2017, 245(PtB):1 603-1 609.
[16] LI Y M, GAO J Q, PEI X Z, et al. Production of L-alanyl-L-glutamine by immobilized Pichia pastoris GS115 expressing-amino acid ester acyltransferase [J]. Microbial Cell Factories, 2019, 18.DOI:10.1186/S12934-019-1077-1.
[17] CHANG H N, JUNG K, CHOI J, et al. Multi-stage continuous high cell density culture systems: A review [J]. Biotechnology Advances, 2014, 32(2):514-525.
[18] 徐冰冰, 雷庆子, 曾伟主, 等. 高密度发酵产酪氨酸酚裂解酶及催化合成L-DOPA[J]. 食品与发酵工业, 2019, 45(12):7-14.
[19] WESTMAN J O, FRANZEN C J. Current progress in high cell density yeast bioprocesses for bioethanol production [J]. Biotechnology Journal, 2015, 10(8):1 185-1 195.
[20] 荣辉, 吴兵兵, 杨贤庆, 等. 海洋微藻高密度异养发酵的研究进展[J]. 食品工业科技, 2018, 39(5):325-330.
[21] SUBRAMANIAM R, THIRUMAL V, CHISTOSERDOV A, et al. High-density cultivation in the production of microbial products [J]. Chemical and Biochemical Engineering Quarterly, 2018, 32(4):451-464.
[22] 李伟娜, 尚子方, 段志广, 等. 毕赤酵母高密度发酵产Ⅲ型类人胶原蛋白及其胃粘膜修复功能[J]. 生物工程学报, 2017, 33(4): 672-682.
[23] WANG T, LU Y, YAN H, et al. Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8 [J]. Bioprocess and Biosystems Engineering, 2020, 43(3):515-528.
[24] ACHARYA B, DUTTA A, BASU P. Ethanol production by syngas fermentation in a continuous stirred tank bioreactor using Clostridium ljungdahlii[J]. Biofuels, 2019, 10(2):221-237.
[25] 徐富增, 王柯, 李善元, 等. 拟指数—DO-stat两阶段补料策略在糖蜜酵母高密度培养中的应用[J]. 食品与发酵工业,2019, 45(7): 15-21.
[26] 王维卓. 重组大肠杆菌高密度发酵生产类人胶原蛋白Ⅱ发酵过程优化[D]. 西安: 西北大学, 2010.
[27] LI X, HUANG C, XU C Q, et al. High cell density culture of baker's yeast FX-2 based on pH-stat coupling with respiratory quotient [J]. Biotechnology and Applied Biochemistry, 2019, 66(3):389-397.
[28] HU Z C, ZHENG Y G, SHEN Y C. Dissolved-oxygen-stat fed-batch fermentation of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112 [J]. Biotechnology and Bioprocess Engineering, 2010, 15(4):651-656.
[29] ZHAN X B, ZHU L, WU J R, et al. Production of polysialic acid from fed-batch fermentation with pH control [J]. Biochemical Engineering Journal, 2002, 11(2):201-204.
[30] 杨晓勇. 甘油培养基中有机氮源对大肠杆菌生长和外源蛋白表达影响的研究[D]. 上海: 华东理工大学, 2013.
[1] 杜如冰, 任聪, 吴群, 徐岩. 生态发酵技术原理与应用[J]. 食品与发酵工业, 2021, 47(1): 266-275.
[2] 赵宁, 王玉川, 易萍, 闫巧娟, 江正强. 樟绒枝霉α-淀粉酶在毕赤酵母中的高效表达及在麦芽糖浆制备中的作用[J]. 食品与发酵工业, 2019, 45(2): 1-6.
[3] 魏春, 任郑, 吴涛, 钱晓芬, 孙杰, 汪钊. 重组牛乳铁蛋白功能片段在毕赤酵母中的表达及高密度发酵[J]. 食品与发酵工业, 2019, 45(11): 29-33.
[4] 蔡文, 曾伟主, 周景文. 氧化葡萄糖酸杆菌产2-酮基-D-葡萄糖酸的发酵过程优化[J]. 食品与发酵工业, 2019, 45(11): 40-45.
[5] 刘嘉男, 巩建业, 高庭, 等.. α-L-鼠李糖苷酶高密度发酵及其固定化[J]. 食品与发酵工业, 2018, 44(7): 44-48.
[6] . 产抗菌肽 PSI 的重组乳酸克鲁维酵母高密度发酵及 产物的分离纯化研究[J]. 食品与发酵工业, 2018, 44(4): 13-21.
[7] 马文瑞 , 邹弯 , 魏玉洁 , 等. 酿酒葡萄品种SSR-PCR体系的优化与建立[J]. 食品与发酵工业, 2018, 44(3): 52-.
[8] 郭军玲, 王哲, 刘中美, 等. 高分子量腈水合酶工程菌生产烟酰胺的工艺建立[J]. 食品与发酵工业, 2018, 44(2): 8-.
[9] 江鹏, 汤斌.. 蚓激酶基因在毕赤酵母中的表达及其发酵条件优化[J]. 食品与发酵工业, 2018, 44(10): 79-83.
[10] 宋晶晶,田歌,吴浩天,刘荣刚,李俊波,马露露,黄若兰,童婷,武运. 响应面试验优化葡萄籽鹰嘴豆复合饮料稳定剂配方[J]. 食品与发酵工业, 2017, 43(8): 197-.
[11] 王兵波,沈微,钱灵紫,李琛,罗枭,樊游,陈献忠. 一种密码子优化的酸性普鲁兰酶基因在巴斯德毕赤酵母中的高效表达[J]. 食品与发酵工业, 2016, 42(7): 9-.
[12] 程胜,段绪果,吴敬. 重组蔗糖异构酶的制备及应用条件优化[J]. 食品与发酵工业, 2015, 41(5): 41-.
[13] 周爱梅,张静,邓爱鹏,高力虎,仲昭财,杨树林. 重组人源胶原蛋白的分离纯化及其结构表征[J]. 食品与发酵工业, 2015, 41(3): 46-.
[14] 李宗朋,王健,宋全厚,尹建军,侯玉柱,张英. 近红外光谱技术在食品检测与质量控制中的应用[J]. 食品与发酵工业, 2012, 38(08): 125-131.
[15] 任路静,金明杰,纪晓俊,高振,黄和. 利用Crypthecodinium cohnii高密度发酵生产DHA的流加策略研究[J]. 食品与发酵工业, 2007, 33(1): 25-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn