Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (20): 15-20    DOI: 10.13995/j.cnki.11-1802/ts.024155
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
微波真空冷冻干燥功率对鸡蛋清水分迁移及凝胶微观结构的影响
史胜娟, 刘丽莉*, 张孟军, 郝威铭, 李媛媛, 杨晓盼
(河南科技大学 食品与生物工程学院,食品加工与安全国家级教学示范中心,河南 洛阳, 471023)
Effect of microwave vacuum freeze-drying power on the moisture transfer and the gel microstructure of egg white
SHI Shengjuan, LIU Lili*, ZHANG Mengjun, HAO Weiming, LI Yuanyuan, YANG Xiaopan
(College of Food and Bioengineering, Henan University of Science and Technology, National Experimental Teaching Demonstration Center for Food Processing and Security, Luoyang 471023, China)
下载:  HTML   PDF (2607KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 探究微波真空冷冻干燥功率对鸡蛋清中水分迁移、热力学特性及凝胶微观结构的影响。采用低场核磁共振技术、差示扫描量热分析(differential scanning calorimetry,DSC)和扫描电子显微镜(scanning electron microscopy,SEM)测定不同微波功率干燥条件下鸡蛋清中的水分迁移规律、蛋白的热力学特性和凝胶微观结构。结果表明,状态最为活跃的自由水在干燥过程中最先被除去,在90~180 min内脱除的速率最快;提高微波功率能够加快水分迁移的速度,有利于干燥的进行。DSC结果表明,微波功率为400 W和500 W时,蛋清粉峰值温度较高,从而引起蛋白质结构由有序变为无序。SEM结果表明,增大微波功率,鸡蛋清凝胶结构的孔道和孔径也随之增加,结构也变得较为疏松。该研究为微波真空冷冻干燥鸡蛋清粉工艺优化提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史胜娟
刘丽莉
张孟军
郝威铭
李媛媛
杨晓盼
关键词:  微波真空冷冻干燥  鸡蛋清  低场核磁共振技术  水分迁移  凝胶微观结构    
Abstract: This paper aims to investigate the effects of microwave vacuum freeze-drying power on water migration, thermodynamic properties and gel microstructure in egg white. Low-field NMR, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to determine the water migration, thermodynamic properties and gel microstructure of egg whites under different microwave power under drying conditions. Results showed that the most active free water was removed first in the drying process, and the removal rate was the fastest at the range of 90-180 min. Increasing microwave power can speed up water migration which is good for drying. DSC showed that when the microwave power was 400 W and 500 W, the peak temperature of egg white powder was high, which caused the protein structure to change from order to disorder. SEM showed that with the increase of microwave power, the pore channels and pore sizes of the egg white gel structure also increased, and the structure became looser. In conclusion, this study provides references for microwave vacuum freeze-drying of egg white powder.
Key words:  microwave vacuum freeze drying    egg white    low field differential scanning calorimetry    water migration    gel microstructure
收稿日期:  2020-04-06      修回日期:  2020-05-21           出版日期:  2020-10-25      发布日期:  2020-11-12      期的出版日期:  2020-10-25
基金资助: 国家自然基金项目(U1704114);河南省重点攻关项目(182102110346);河南省重大专项(161100110900;161100110600-2;161100110700-2;161100110800-06)
作者简介:  本科生(刘丽莉教授为通讯作者,E-mail:yangliuyilang@126.com)
引用本文:    
史胜娟,刘丽莉,张孟军,等. 微波真空冷冻干燥功率对鸡蛋清水分迁移及凝胶微观结构的影响[J]. 食品与发酵工业, 2020, 46(20): 15-20.
SHI Shengjuan,LIU Lili,ZHANG Mengjun,et al. Effect of microwave vacuum freeze-drying power on the moisture transfer and the gel microstructure of egg white[J]. Food and Fermentation Industries, 2020, 46(20): 15-20.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024155  或          http://sf1970.cnif.cn/CN/Y2020/V46/I20/15
[1] 代晓凝,刘丽莉,陈珂,等.不同干燥方式对鸡蛋清粉蛋白质凝胶特性及结构的影响[J].食品与发酵工业,2019,45(19):112-118.
[2] ZHANG Junhe, GAO Haiyan, SHI Rui. Technological study on instant date powder in natural ziziphus jujuba through vacuum freeze-drying[J].农业科学与技术(英文版),2010,11(7):69-71;175.
[3] LI L L, ZHANG Min, SONG Xiaoning, et al. Changes in unfrozen Water content and dielectric properties during pulse vacuum osmotic dehydration to improve microwave freeze-drying characteristics of Chinese yam[J].Journal of the Science of Food and Agriculture,2019,99(14):6 572-6 581.
[4] FAN Kai, ZHANG Min, ARUN S MUJUMDAR. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review[J].Critical Reviews in Food Science and Nutrition,2019,59(8):1 357-1 366.
[5] YASUMASA ANDO,SHOJI HAGIWARA,HIROSHI NABETANI,et al. Improvements of drying rate and structural quality of microwave-vacuum dried carrot by freeze-thaw pretreatment[J]. LWT-Food Science and Technology,2019,100:294-299.
[6] 颜建春,胡志超,吴朋来, 等.热板-微波联合真空冷冻干燥茭白工艺优化[J].农业工程学报,2017,33(1):262-270.
[7] 阙婷婷,张佳琪,张慧, 等.真空微波干燥与真空冷冻干燥对鱼糜干制品质量的影响[J].食品工业科技,2012,33(23):253-257;262.
[8] LITVIN S,MANNHElM C H,MILTZ J.Dehydration of carrots by a combination of freeze drying,microwave heating and air or vacuum drying[J].Journal of Food Engineering,1998,36(1):103-111.
[9] ZHOU Bing, ZHANG Min, FANG Zhongxiang, et al. A combination of freeze drying and microwave vacuum drying of duck egg white protein powders[J].Drying Technology,2014,32(15):1 840-1 847.
[10] 汤梦情,陈宏伟,朱蕴兰,等.微波真空与真空冷冻组合干燥对芦笋营养与品质的影响[J].食品研究与开发,2019,40(5):76-81.
[11] 任广跃,任丽影,张伟,等.正交试验优化怀山药微波辅助真空冷冻干燥工艺[J].食品科学,2015,36(12):12-16.
[12] AHMET POLAT, ONUR TASKIN, NAZMI IZLI, et al. Continuous and intermittent microwave-vacuum drying of apple: Drying kinetics, protein, mineral content, and color[J].Journal of Food Process Engineering,2019,42(3):e13 012.
[13] LI Chunbao, LIU Dengyong, ZHOU Guanghong,et al. Meat quality and cooking attributes of thawed pork with different low field NMR T21.[J].Meat Science,2012,92(2):79-83.
[14] 邵小龙,张蓝月,冯所兰.低场核磁技术检测芝麻油掺假[J].食品科学,2014,35(20):110-113.
[15] DANIEL CABALLERO,ANDRÉS CARO,PABLO G. Modeling salt diffusion in Iberian ham by applying MRI and data mining[J]. Journal of Food Engineering,2016,189:115-122.
[16] 张楠,庄昕波,黄子信, 等.低场核磁共振技术研究猪肉冷却过程中水分迁移规律[J].食品科学,2017,38(11):103-109.
[17] 李娜,李瑜.利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J].食品科学,2016,37(23):84-88.
[18] 隋思瑶,孙灵湘,王毓宁,等.基于低场核磁共振技术研究大米冻融过程中水分状态变化[J].食品安全质量检测学报,2019,10(20):6 849-6 854.
[19] HU Xuanye, WU Ping, ZHANG Shiping, et al. Moisture conversion and migration in single-wheat kernel during isothermal drying process by LF-NMR[J].Drying Technology,2019,37(7):803-812.
[20] 李定金,段振华,刘艳,等.利用低场核磁共振技术研究调味山药片真空微波干燥过程中水分的变化规律[J].食品科学,2019,40(5):116-123.
[21] 吉琳琳,夏阿林.基于低场核磁共振技术的大米水分含量及活度快速预测[J].食品与机械,2018,34(11):70-74;95.
[22] 冯爱博,杨光,贺亮, 等.低场核磁共振技术对不同贮藏条件下雷竹笋水分迁移规律的研究[J].食品与发酵科技,2018,54(1):18-23.
[23] 朱文学,尤泰斐,白喜婷,等.基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J].农业机械学报,2018,49(12):364-370.
[24] 段柳柳,段续,任广跃.微波冻干怀山药脆片干燥过程中脆性变化与数学模型的建立[J].食品科学,2018,39(23):29-35.
[25] 邵小龙,汪椭,时小转,等.水稻生长过程中籽粒水分状态和横向弛豫特性分析[J].中国农业科学,2017,50(2):240-249.
[26] 田其英,华欲飞.大豆蛋白溶解性研究[J].粮食与油脂,2006(6):6-8.
[27] YAKOUTA KHALDI, LEILA TOUNSI, MOHAMED AMINE BALTI, et al. Impact of microwave drying on sesame coats quality[J].Journal of Food Process Engineering,2018,41(7):e12 860.
[28] 莫耽,黄行健,段雅庆,等.辐照对大豆分离蛋白功能特性影响[J].食品科学,2011,32(1):52-55.
[29] CÁRCEL J A, GARCIA-PEREZ J V, RIERA E, et al. Improvement of convective drying of carrot by applying power ultrasound-influence of mass load density[J].Drying Technology,2011,29(2):174-182.
[30] 马怡童,朱文学,白喜婷,等.超声强化真空干燥全蛋液的干燥特性与动力学模型[J].食品科学,2018,39(3):142-149.
[1] 王秋玉, 朱文政, 薛盼盼, 沙文轩, 苏嘉敏, 章海风, 周晓燕. 冻融循环对预醒发冷冻豆沙包品质的影响[J]. 食品与发酵工业, 2021, 47(9): 215-222.
[2] 陈珂, 刘丽莉, 郝威铭, 杨晓盼, 李媛媛. 喷雾干燥入口温度对蛋清蛋白流变和结构特性的影响[J]. 食品与发酵工业, 2021, 47(2): 15-21.
[3] 李素云, 李星科, 张华, 张艳艳, 刘兴丽, 王宏伟. 大米多肽对冷冻面团发酵特性及馒头品质的影响[J]. 食品与发酵工业, 2020, 46(8): 162-166.
[4] 蓝蔚青, 刘嘉莉, 许巧玲, 谢晶. 植酸与竹醋液对冰藏大黄鱼品质、微生物与水分迁移的影响[J]. 食品与发酵工业, 2020, 46(7): 173-179.
[5] 汪经邦, 李沛韵, 谢晶, 刘大勇. 不同贮藏温度对暗纹东方鲀水分迁移、质构和色泽的影响及其货架期预测[J]. 食品与发酵工业, 2020, 46(6): 73-81.
[6] 张毅, 万金庆, 杨帆, 冷争争. 低盐冰温脱水牡蛎的贮藏性[J]. 食品与发酵工业, 2020, 46(19): 136-142.
[7] 刘芳, 皇高峰, 王青, 张继冉, 徐淑霞, 张世敏, 吴坤. γ-聚谷氨酸对面条面团流变学特性和微观结构的影响[J]. 食品与发酵工业, 2020, 46(14): 85-90.
[8] 王蒙, 蓝蔚青, 邱泽慧, 傅子昕, 巩涛硕, 谢晶. 苹果多酚处理后冰鲜大黄鱼贮藏期间品质与水分迁移的变化[J]. 食品与发酵工业, 2019, 45(21): 93-101.
[9] 杨帆, 万金庆, 厉建国. 微冻贮藏虾仁的水分迁移与品质变化[J]. 食品与发酵工业, 2019, 45(20): 68-74.
[10] 黄忠民, 贾若南, 黄婉婧, 艾志录, 潘治利, 雷萌萌. 冻结方式对油条品质特性的影响[J]. 食品与发酵工业, 2019, 45(16): 181-186.
[11] 李莎莎, 计红芳, 张令文, 武胜龙, 韩西平, 陈复生, 马汉军. 冰温保鲜过程中鸡肉品质及微观结构的变化[J]. 食品与发酵工业, 2019, 45(16): 201-207.
[12] 谢新华, 范逸超, 徐超, 沈玥, 张蓓, 邢彩云. γ-聚谷氨酸对小麦淀粉凝胶冻融稳定性的影响[J]. 食品与发酵工业, 2019, 45(14): 97-101.
[13] 石芳,肖星凝,李瑶,杨雅轩,郭晓晖,吴素蕊,明建. 食用菌恒温干燥过程中MRI成像及水分迁移变化[J]. 食品与发酵工业, 2017, 43(7): 98-.
[14] 杨宏旭,刘大松,李珺珂,贺云,周鹏. 低温贮藏条件下青鱼肉中蛋白和组织结构的变化对鱼肉品质的影响[J]. 食品与发酵工业, 2016, 42(8): 208-.
[15] 杨景芝,孙衍华,白吉刚,张杰道,杨国栋,李菡. 鸡蛋清溶菌酶提取工艺的改进[J]. 食品与发酵工业, 2004, 30(5): 85-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn