Study on physiology and quality of fresh-cut apples
ZHANG Yuhua1,2,*, MENG Yi1,2, WANG Tiantian3, ZHANG Fan3
1(National Engineering Research Center for Agricultural Products Logistics, Jinan 250103,China); 2(Shandong Institute of Commerce and Technology Shandong, Key Laboratory of Storage and Transportation Technology of Agricultural Products, Jinan 250103,China); 3(Qilu Medical University, Jinan 250103,China)
Abstract: In order to improve the quality and prolong shelf life of fresh-cut apples, the effects of ethanol fumigation and high-oxygen pretreatment on the physiology and quality of fresh-cut apples were studied. The fumigation concentration of ethanol was 200, 400 and 600 μL/L respectively, with the fumigation for 2 and 4 h. The oxygen volume content in high-oxygen pretreatment was 95%-100% with the treatment for 12 h, 24 h and 36 h. The respiration rate, total number of colonies, browning degree, polyphenol oxidase (PPO) activity, peroxidase (POD) activity and malondialdehyde (MDA) content of fresh-cut apples were measured, and sensory evaluation was performed during storage at 0-1 ℃ with relative humidity of 90%-95%. The results showed that both ethanol fumigation and high-oxygen pretreatment could delay the respiration peak and reduce the peak value. And the total number of colonies in ethanol fumigation group was significantly lower than that in the control group after stored for six days (P<0.05). Moreover, the antibacterial effect of high-oxygen pretreatment was obvious in the early stage of storage. The browning degree, PPO activity and POD activity of ethanol fumigation and high-oxygen pretreatment group were all lower than the control group (P<0.05) at the later stage of storage. MDA content in the ethanol fumigation group was lower than that in the control group (P<0.05), and MDA content in the high-oxygen pretreatment group was significantly lower than that control group after the ninth day (P<0.05). The sensory evaluation scores of ethanol fumigation and high-oxygen pretreatment were higher than those of the control group(P<0.05). Among which, the best condition for ethanol fumigation was 400 μL/L ethanol fumigation for 2 h, and the best condition for high-oxygen pretreatment was 95%-100% pretreatment for 24 h. So ethanol fumigation and high-oxygen pretreatment are feasible to maintain the high physiology and quality of fresh-cut apples.
[1] OLIVEIRA M, ABADIAS M, USALL J, et al.Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables-A review[J]. Trends in Food Science & Technology, 2015,46(1):13-26. [2] 张慜, 马良. 对我国鲜切果蔬微加工行业及安全性的思考[J].江南大学学报(人文社会科学版),2016,15(5):110-114. [3] HERPPICH W B, HUYSKENS-KEIL S, HASSENBERG K.Impact of ethanol treatment on physiological and micro-biological properties of fresh white asparagus(Asparagus officinalis L.) spears[J]. LWT-Food Science and Technology, 2014,57(1):156-164. [4] BEAULIEU J C, SALTVEIT M E.Inhibition or promotion of tomato fruit ripening by acetaldehyde and ethanol is concentration-dependent and varies with initial fruit maturity[J]. Journal of American Society for Horticulture Science,1997,122(3):392-398. [5] AHGN W, LI X, WANG X, et al.Ethanol vapour treatment alleviates postharvest decay and maintains fruit quality in Chinese bayberry[J]. Postharvest Biology and Technology,2007,46(2):195-198. [6] 李佳格, 胡文忠. 乙醇处理对鲜切生菜品质保持与抑菌的作用机理[D].大连:大连工业大学,2017. [7] HOMAIDA M A, YAN S L, YANG H.Effects of ethanol treatment on inhibiting fresh-cut sugarcane enzymatic browning and microbial growth[J]. LWT-Food Science and Technology,2017,77(4):8-14. [8] GAO J, LUO Y G, TURNER E, et al.Mild concentration of ethanol in combination with ascorbic acid inhibits browning and maintains quality of fresh-cut lotus root[J]. Postharvest Biology and Technology,2017,128:169-177. [9] YAN S L, LUO Y G, ZHOU B, et al.Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples[J]. LWT-Food Science and Technology,2017,80:311-320. [10] 王雅, 邹红梅, 刘聪美, 等. 乙醇冷藏处理对鲜切马铃薯酶促褐变的抑制及其机理研究[J]. 中国食品添加剂, 2019,30(4):80-85. [11] 牛丽芳, 杨颖, 易阳, 等. 紫外线照射及乙醇处理对鲜切荸荠褐变的影响[J]. 食品科技, 2019,44(11):41-46. [12] CHERVIN C, WESTERCAMP P, MONTEILS G.Ethanol vapors limit Botrytis development over the postharvest life of table grapes[J]. Postharvest Biology and Technology,2005,36(3):319-322. [13] MUHAMMAD R K, WANNEE C, AMPORN S, et al.Combined effects of natural substances and modified atmosphere packaging on reducing enzymatic browning and postharvest decay of longan fruit[J]. International Journal of Food Science & Technology,2020,55(2):500-508. [14] LU H Y, WANG K D, WANG L, et al.Effect of super-atmospheric oxygen exposure on strawberry (Fragaria×ananassa Fuch.) volatiles, sensory and chemical attributes[J]. Postharvest Biology and Technology,2018,142:60-71. [15] ALLENDE A, LUO Y, MCEVOY J L, et al.Microbial and quality changes in minimally processed baby spinach leaves stored under super atmosphere oxygen and modified atmosphere conditions[J]. Postharvest Biology and Technology,2004,33(1):51-59. [16] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理局.GB 4789.2—2016 食品安全国家标准食品微生物学检验菌落总数测定[S]. 北京:中国标准出版社,2016. [17] LIU C H, MA T, HU W Z, et al.Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh-cut apple[J]. International Journal of Food Science & Technology, 2016, 51(5):1 099-1 109. [18] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007: 176. [19] ASODA T, TERAI H, KATO M, et al.Effects of postharvest ethanol vapor treatment on ethylene responsiveness in broccoli[J]. Postharvest Biology and Technology,2009,52(2):216-220. [20] HU W Z, JIANG A L, TIAN M X, et al.Effect of ethanol treatment on physiological and quality attributes of fresh-cut eggplant[J]. Journal of the Science of Food and Agriculture, 2010(90):1 323-1 326. [21] TINELLO F, LANTE A.Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products[J]. Innovative Food Science & Emerging Technologies, 2018,50:73-83. [22] TAO R, ZHANG F, TANG Q J, et al.Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples[J]. Food Chemistry, 2019,274(15): 415-421. [23] CHEN J R, HU Y F, WANG J M, et al.Combined Effect of ozone treatment and modified atmosphere packaging on antioxidant defense system of fresh-cut green peppers[J]. Journal of Food Processing and Preservation, 2016,40(5):1 145-1 150. [24] ZINASH A B, OLUWAFEMI J C, UMEZURUIKE L O.Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging[J]. Food Packaging and Shelf Life,2019,21:1-11. [25] 段学武, 蒋跃明. 高氧对果蔬采后生理影响研究进展[J]. 热带亚热带植物学报,2005, 13(6): 543-548. [26] SRILAONG V, TATSUMI Y.Oxygen action on respiratory processes in cucumber fruit (Cucumis sativus) stored at low temperature[J]. Journal of Horticultural Science & Biotechnology, 2003, 78(5): 629-633. [27] KADER A A, BEN-YEHOSHUA S.Effects of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables[J]. Postharvest Biology and Technology, 2000, 20(1):1-13. [28] JACXSENS L, DEVLIEGHERE F, VAN D S C, et al. Effect of high oxygen modified atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce[J]. International Journal of Food Microbiology,2001,71(2-3):197-210. [29] LU C W, TOIVONEN P M A. Effect of 1 and 100 kPa O2 atmospheric pretreatments of whole ‘Spartan' apples on subsequent quality and shelf life of slices stored in modified atmosphere packages[J]. Postharvest Biology and Technology, 2000, 18(2):99-107. [30] AMANATIDOU A, SMID E J, BENNIK M H J, et al. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations[J]. FEMS Microbiology Letters, 2001, 203(1):87-94. [31] LIU X, WANG T, LU Y Z, et al.Effect of high oxygen pretreatment of whole tuber on anti-browning of fresh-cut potato slices during storage[J]. Food Chemistry,2019,31(15): 1 252-1 258. [32] ALLENDE A, JACXSENS L, DEVLIEGHERE F, et al.Effect of super atmospheric oxygen packaging on sensorial quality, spoilage, and Listeria monocytogenes and Aeromonas caviae growth in fresh processed mixed salads[J]. Journal of Food Protection, 2002, 65(10):1 565-1 573. [33] DAY B P F. High oxygen modified atmosphere packaging for fresh prepared produce[J]. Postharvest News and Information, 1996, 7(3):31-34. [34] AMANATIDOU A, SMID E J, GORRIS L G M. Effect of elevated oxygen and carbon dioxide on the surface growth of vegetable-associated micro-organisms[J]. Journal of Applied Microbiology, 1999,86:429-438.